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ABSTRACT

Medical images may contain various types of artifacts with
different patterns and mixtures, which depend on many fac-
tors such as scan setting, machine condition, patients’ char-
acteristics, surrounding environment, etc. However, existing
deep learning based artifact reduction methods are restricted
by their training set with specific predetermined artifact type
and pattern. As such, they have limited clinical adoption. In
this paper, we introduce a “Zero-Shot” medical image Artifact
Reduction (ZSAR) framework, which leverages the power of
deep learning but without using general pre-trained networks
or any clean image reference. Specifically, we utilize the low
internal visual entropy of an image and train a light-weight
image-specific artifact reduction network to reduce artifacts
in an image at test-time. We use Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI) as vehicles to show
that ZSAR can reduce artifacts better than the state-of-the-
art both qualitatively and quantitatively, while using shorter
test time. To the best of our knowledge, this is the first deep
learning framework that reduces artifacts in medical images
without using a priori training set.

Index Terms— Image denoising, Deep learning, Zero-
Shot

1. INTRODUCTION

Deep learning [1, 2] has demonstrated its great power in arti-
fact reduction, a fundamental task in medical image analysis
[3, 4, 5] to produce clean images for clinical diagnosis, deci-
sion making, and accurate quantitative image analysis. Exist-
ing deep learning based frameworks [6, 7, 8, 9] use training
data sets that contain paired images (same images with and
without artifacts) to learn the artifact features. Simulations
are often needed to generate the data set for these methods,
which may be different from clinical situations and lead to
biased learning [6, 10]. To address this issue, [11] used cycle-
consistent adversarial denoising network (CCADN) which no
longer requires paired data.
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However, all these methods still suffer from two main-
stays: First, they require clean image references, which can
be hard to obtain clinically. For example, motion artifacts
in Magnetic Resonance Imaging (MRI) are almost always
present due to the lengthy acquisition process [12]. In such
situations, simulation is still the only way to generate the
data set. Second, although the trained networks outperform
non-learning based algorithms such as Block Matching 3D
(BM3D) [13], they can only be applied to scenarios where
the artifacts resemble what are in the training set, lacking the
versatility that non-learning based methods can offer.

To attain the performance of deep learning based meth-
ods and the versatility of non-learning based ones, we intro-
duce a “Zero-Shot” image-specific artifact reduction network
(ZSAR), which builds upon deep learning yet does not require
any clean image reference or a priori training data. Based
on the key observation that most medical images have areas
that contain artifacts on a relatively uniform background, the
proposed approach could extract artifact pattern from image
itself. At test-time, ZSAR extracts an artifact pattern directly
and synthesizes paired image patches from input image to it-
eratively train a light-weight image-specific autoencoder for
artifact reduction. Experimental results on clinical MRI and
CT data with a variety of artifacts show that it outperforms the
state-of-the-art methods using shorter execution time. To the
best of our knowledge, ZSAR is the first deep learning based
method that reduces artifacts in medical images without a pri-
ori training data.

2. METHODS

2.1. Overview

The main motivation of our work lies behind the fact that it
is almost always possible to identify small regions of inter-
ests where significant artifacts exist over a relatively uniform
background in any medical images. As such, it is possible to
synthesize the paired dirty-clean patches from the exact im-
age with artifacts to be reduced.

The overall framework of the proposed ZSAR is shown in
Fig. 1, which is an iterative process. The framework works
with 2D images, so 3D volumes are sliced first, similar to
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Fig. 1. The overall structure of ZSAR composed of Artifact
Pattern Extraction and Artifact Reduction Network (ARN).
Note that we treat the original input image as the output of
“0th” iteration.

many existing works [6]. For clarity, we call the phase where
the model is trained to obtain the weights as “training”, and
the phase that applies the trained model to the input image to
reduce artifacts as “test”. Note that both phases are done on
the spot for each specific input image and no pre-training is
conducted.

For every iteration, ZSAR first extracts artifact patterns
and synthesizes the paired dirty and clean images using the
patterns (the details will be explained in Section 2.2). Note
that the artifact pattern extraction in the 1st iteration is differ-
ent from those in the subsequent (i + 1)th iterations (i ≥ 1).
Later, the synthesized image is then used to train a light-
weight artifact reduction network (ARN), which can reduce
the artifact in input image (the details will be explained in
Section 2.3). We terminate the iterative process when the ar-
tifact level (standard deviation) does not decrease. Our exper-
iments show that the number of iterations needed is usually
not more than four.

2.2. Artifact Pattern Extraction and Training Data Syn-
thesis

For the 1st iteration, since no clean reference image is pro-
vided, we extract the artifact pattern from the input image it-
self through an unsupervised approach. This is made possible
based on the fact that for most artifacts in medical images, we
can always identify areas where only artifacts exist [14, 15].
As such, we need to identify areas where the background is
relatively uniform yet significant artifacts are present.

Towards this, we first crop the input image into patches
with size 32×32. After that, an unsupervised clustering
method, K-means [16] is applied. The main idea is to clas-
sify the patches into two clusters, one containing patches
without structure boundaries (i.e., relatively uniform back-
ground), and the other containing patches with structure
boundaries. Such a classification is possible as the patches in
these two clusters will exhibit significant differences in terms
of standard distributions of the pixel values: when structure

boundaries are present, significant mean shift and large yet
localized variations in pixel values can be observed. The
feature of each patch is thus extracted as follows: the overall
standard deviation of all the pixel values in the patch, and
the mean value of all standard deviations extracted by a 8×8
sliding window. Fig. 2 shows an example of the clustering
process. It can be clearly seen that one of the clusters contains
patches with only uniform background (either with or without
artifacts), while the other one contains all the patches with
structure boundaries. As the patches in the former cluster
always contain relatively uniform background, a zero-mean
artifact pattern can be extracted by subtracting the mean pixel
value of each patch. Note that in the patches without artifacts,
the pattern extracted will just be empty. On the other hand, as
long as some of the patches contain artifacts, our framework
can utilize them to further synthesize the training data, which
will be discussed later.

In the subsequent (i+1)th iteration (i ≥ 1), we observed
that the difference between the clean image and the output im-
age of (i)th iteration can be seen as the reduced artifact. The
zero-mean artifact pattern is again generated by subtracting
the mean pixel value of the difference.

To reflect artifacts of different intensities, we randomly
scale each pattern following standard normal distribution.
Those scaled artifact patterns are then superposed to ran-
dom areas in the input image to form dirty images. Then
we use the input image as the corresponding clean image so
that paired dirty-clean data set, which contained only one
dirty and one clean image is formed. Note that this synthesis
process is conducted in every iteration.

(a) Input image (b) Artifact cluster (c) Other cluster

Fig. 2. An input image and examples of the two clusters after
K-means is applied to the patches.

2.3. Artifact Reduction Network

Fig. 3. Artifact Reduction Network (ARN) architecture. Note
that n and s of each layer stand for the number of kernels and
strides, respectively.
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After the paired data is synthesized, it can be used to
train any existing neural networks for artifact reduction.
Considering the need of test-time training, we design a com-
pacted network as shown in Fig. 3, which is formed by a
11-layer contextual autoencoder to reduce artifacts and re-
store the structural information. With the skip connection,
these decoder layers can capture more contextual informa-
tion extracted from different encoder layers. With such a
light-weight network structure, it requires only a few epochs
to converge. The pixel-wise mean square error (MSE) is
used as the loss function to preserve structural and substance
information:

Loss = LMSE(O,G) (1)

where O and G are the output of the contextual autoencoder
and the clean image reference, respectively.

Through experiments, we find that ARN should be initial-
ized and retrained in every iteration, which is more effective
than incremental training based on the network from previous
iterations. This is because each iteration is essentially a new
artifact reduction procedure and the model only needs to learn
the artifact level in the input of the current iteration. Also, in
each iteration, only a single pair of images are used for train-
ing due to speed consideration. Since essentially, the same
image is used during training and test, there is no overfitting
concern.

3. EXPERIMENTS AND RESULTS

3.1. Cardiac Data Set and Evaluation Metrics

Our data set contains 17,844 2D MRI images (286 pulse se-
quences) from 11 patients and 48 3D cardiac CT volumes
from 24 patients. Note that all MRI images are scanned by
a 3T system.

All MRI and CT images are qualitatively evaluated by our
radiologists on structural preservation and artifact level. For
quantitative evaluation, due to the lack of ground truth, simi-
larity based method cannot be applied in our case. For MRI,
in addition to the mean of the pixel values in the most ho-
mogeneous areas, similar to [17, 18, 19] we divide the mean
by the standard deviation of the pixel values in the area and
use the resulting Signal-to-Noise ratio (SNR) as the metric.
For CT, we follow existing work [20, 6] and select the most
homogeneous area in regions of interest selected by our radi-
ologists. The standard deviation (artifact level) of the pixels in
the area should be as low as possible, and the mean (substance
information) discrepancy after artifact reduction should not be
too large to cause information loss.

3.2. Experimental Setup

ZSAR was implemented in Python3 with TensorFlow library.
NVIDIA GeForce GTX 1080 Ti GPU was used to train and
test the networks. For every convolution and deconvolution
layer, Xavier initialization [21] was used for the kernels and

the filter size is set to 3 and 4, respectively. Adam optimiza-
tion [22] method was applied to train ARN by setting learning
rate as 0.0005. Training phase was performed by minimizing
loss function with the number of epoch and the number of
iteration set to 1,000 and 4, respectively.

3.3. Comparisons with the state-of-the-art

We compare ZSAR with CCADN, a state-of-the-art deep
learning based method for medical image artifact reduction
[11], which does not require paired training data. We also
compare ZSAR with Deep image prior (DIP) [23], a state-of-
the-art general-purpose denoising method, and a non-learning
based algorithm BM3D. For CCADN and DIP, we follow the
setting recommended in the paper. For each image, we tuned
the parameters in BM3D to attain the best quality.

We start our experiments with the ideal scenario where
the artifacts in both training set of CCADN and test MRI im-
ages contain motion artifact only. The qualitative results for
CCADN, BM3D, DIP, and ZSAR are shown in Fig. 4 (a). All
the methods preserve structures well, and ZSAR leads to the
best motion artifact reduction. The corresponding statistics
for the marked regions are reported in Table 1 (a). From the
table, though CCADN has the largest SNR, it suffers from
large mean discrepancy, which can be problematic. ZSAR
achieves up to 50% higher SNR than BM3D. When compar-
ing with DIP, ZSAR achieves similar SNR but less mean dis-
crepancy.

Next, we study the non-ideal scenario where different ar-
tifact patterns or noise level of artifacts are absent from the
training set of CCADN but appear in the test image. The
results for MRI with different artifact patterns are shown in
Fig. 4 (b-c) and Table 1 (b-c), respectively. Qualitatively, we
can see that ZSAR outperforms CCADN and BM3D, while
CCADN and DIP in case (b) result in brighter images (due
to shifted mean pixel values). Quantitatively, ZSAR attains
up to 77% and 74% higher SNR compared with CCADN and
BM3D, respectively. In addition, since CCADN was trained
in different scenario, in the region marked with red in case
(c), it obtains SNR even smaller than the input image. Com-
pared with DIP, ZSAR achieves lower SNR on region marked
with red in case (b) and region marked with blue in case (c).
However, this is in fact due to the large mean discrepancy in
those two cases from DIP, which is not acceptable.

For CT, we follow similar setting as MRI in both sce-
narios. In ideal scenario, our experiments show that ZSAR
achieves results comparable with that of CCADN and 14%
lower standard deviation than BM3D. In non-ideal scenario,
ZSAR beats CCADN and BM3D, achieving up to 19% and
25% lower standard deviation, respectively. On the other
hand, DIP yields over 200% mean discrepancy in both sce-
narios, which is a critical problem for CT images.

Finally, to show that test-time training is feasible, we
compare the average test time of ZSAR and the other three
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Input ZSAR(ours) CCADN BM3D DIP
(a) Ideal motion artifact

Input ZSAR(ours) CCADN BM3D DIP
(b) Non-ideal motion artifact

Input ZSAR(ours) CCADN BM3D DIP
(c) Non-ideal motion artifact

Fig. 4. Comparison using MRI test images under (a) ideal and both (b) and (c) non-ideal scenarios. Both contain motion
artifacts but the pattern in (a) appeared in the training set but not in (b) and (c).

(a) Red (a) Blue (b) Red (b) Blue (c) Red (c) Blue
Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR Mean SNR

Input 477.3 6.2 381.9 7.6 994.4 9.5 1277.0 16.3 1265.0 13.7 1329.4 9.8
ZSAR 494.9 7.1 396.1 11.7 969.0 15.6 1279.8 25.9 1123.8 17.9 1206.9 17.6

CCADN 627.4 9.0 495.4 12.3 1280.4 12.8 1503.2 21.7 1204.3 13.0 1302.9 9.9
BM3D 476.1 6.2 380.3 7.8 989.0 9.8 1272.2 17.8 1260.7 14.2 1325.8 10.1

DIP 509.3 6.9 404.4 11.8 1089.5 18.7 1433.0 18.7 1333.7 15.8 1373.3 20.5
Table 1. Mean and SNR (Signal-to-Noise Ratio) for the largest homogeneous areas inside the marked regions of the MRI
images in Fig. 4.

methods on the 3D MRI and CT images. The results are
shown in Table 2. From the table, ZSAR requires less time
than the other three methods despite the fact that it is trained
on the spot for each input image. The fast speed of ZSAR
is brought by two factors: 1) Its training usually converges
within four iterations, and with few training data. Each itera-
tion only takes about 1,000 epochs to converge. 2) It is much
simpler than CCADN or DIP in structure and thus takes less
time to test each 2D slice of the 3D images.

4. CONCLUSION

In this paper, we introduced ZSAR, a “Zero-Shot” medical
image artifact reduction framework, which reduces artifacts
in a medical image without using general pre-trained net-
works. Our method can be adapted for almost any medical

ZSAR CCADN BM3D DIP
MRI (360 slices) 192 1742 716 22308
CT (484 slices) 416 3533 1825 32641

Table 2. Test time comparison between ZSAR and the three
methods, CCADN, BM3D, and DIP for 3D cardiac MRI
(320×320) and CT (512×512) images (in sec.).

images that contain varying or unknown artifacts, while pre-
vious state-of-the-art methods are restricted by the training
data. Experimental results have shown that our framework
can reduce artifacts qualitatively and quantitatively better
than the state-of-the-art, using shorter test time.
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