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Deep neural networks (DNNs) have achieved state-of-the-art 
performance in areas such as computer vision, machine 
translation, and speech recognition, and have been suc-

cessfully integrated into various commercial products1–5. Recent 
advances have also highlighted their potential for solving challeng-
ing tasks including scene representation and rendering6, naviga-
tion7, and visual question answering8. These developments have 
been accompanied by a surge in the creation of DNN-specific 
hardware accelerators with a wide range of size, power and capac-
ity9–15. However, a key problem in adopting DNNs in real-world 
mission-critical applications (and possibly many artificial intelli-
gence systems based on other approaches) is the lack of competency 
awareness. Even if cutting-edge models trained with a large amount 
of data are used on platforms with virtually unlimited hardware 
resources, the complicated nature of practical problems, and the 
long tail of data distribution on which the models are potentially 
not trained or evaluated, can lead to the failure of DNNs — and this 
failure often happens silently16.

This is in sharp contrast to the competency awareness of humans. 
When a person observes and makes predictions their actual deci-
sion is based on a most likely prediction and also an associated 
estimation of competency or confidence. Doctors will, for example, 
conduct further investigations whenever they are in doubt about a 
diagnosis, even when their best guess is a simple flu, and drivers will 
slow down when they cannot confidently recognize a traffic sign. 
Being overconfident or overcautious can though lead to mistakes or 
inferior efficiency.

In competency-aware neural networks (illustrated in Fig. 1a with 
an application in traffic sign detection), the competency assessment 
provides extra information that informs the decision-making model 
when the prediction is not reliable. Appropriate strategies, such as 
asking for human intervention or using a conservative action, can 
be then used to ensure safety. In order for people to trust DNNs, it 
is important to equip DNNs with good self-awareness of their task 
competency. Without such competency awareness, the completion 

of a target task will still need to be inspected by a human expert in 
order for it to be reliable in critical tasks, even if the prediction is 
reasonably accurate.

Though such ideas predate the prevalence of DNNs17,18, consid-
erable effort has recently been focused on providing an accurately 
quantified score representing the confidence of a neural network 
prediction through uncertainty estimation19–24. The confidence 
score is usually a scalar normalized to [0,1] where wrongly predicted 
samples are expected to be assigned with low confidence scores and 
correctly predicted ones are expected to be assigned with high con-
fidence scores25. (Confidence is the additive inverse of uncertainty 
with respect to 1, so they are used interchangeably in the literature.)

The confidence score (either in its fine-grained form or coarse- 
grained form) is increasingly used to enable the competency- 
awareness of DNNs, and such DNNs offer capabilities that are  
crucial for their application in critical tasks (Fig. 1b), including  
medical diagnosis and autonomous vehicles26–28. Competency 
awareness will be an increasingly important aspect of DNNs in the 
next decade, especially for those deployed in commercial products 
where hardware costs matter and where legal and responsibility 
issues may arise29–31.

Uncertainty estimation of neural networks appears to offer a 
route to competency-aware neural networks, if the uncertainty esti-
mation is accurate enough. However, with the ever-increasing size 
of neural network models, and the pressure it places on hardware 
accelerators, little is known about whether hardware designs will 
affect the uncertainty estimation quality, and vice versa. The pursuit 
of competency awareness introduces a new objective in DNN-based 
systems design (Fig. 1c). In this Perspective, we examine recent 
solutions for competency-aware neural networks, and show that 
hardware advances do affect the uncertainty estimation quality 
and this needs to be taken into consideration by neural architects. 
We discuss the challenges involved in building competency-aware 
neural networks in resource-constrained hardware platforms, and 
explore promising approaches to address them.
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uncertainty estimation for competency awareness
Competency-aware neural networks are dominated by uncertainty 
estimation that gives a confidence score r normalized to [0, 1] as a 
direct and interpretable indication of the neural network’s compe-
tency on given input x. Ideally, neural networks with competency 
awareness should know perfectly whether they can make the correct 
prediction on a given input, which can be defined as r=0 for wrong 
prediction or incompetency and r=1 for correct prediction or com-
petency. In practice, the confidence score r is used in different use 
cases, which are briefly described below.

Selective prediction. In selective prediction, with a confidence 
score ri for each input xi, the model abstains from making prediction 
on xi if ri is smaller than a given threshold. In this way, competency 
awareness is used to avoid making decisions with low confidence. 
The input on which the model is uncertain is forwarded to cor-
responding procedures that typically lead to the involvement of 

human expertise or other models with higher capacity, or simply 
give up on the specific cases. By selectively making predictions on 
a subset of inputs, a given prediction model can achieve a much 
higher accuracy to meet the requirements32. The ability of identify-
ing wrong predictions is usually measured by the area under the 
precision-recall curve (AUPR) and the overall selective predic-
tion performance is measured by the area under the risk coverage  
curve (AURC)25.

Confidence calibration. The aim of a confidence calibration is 
to give a confidence score r∈[0, 1] equal to the probability of the 
prediction being correct and thus directly interpretable. Besides 
being used in the communications with human, the well-calibrated 
bias-free confidence score is also necessary to build a standard inter-
face across various automatic decision-making modules21,33,34. The 
quality of the confidence score is usually measured by the expected 
calibration error (ECE21).
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Fig. 1 | competency awareness of neural networks. a, Illustrative example of neural network competency awareness in traffic sign detection. Competency 
awareness is critical in order for a machine to make human-like decisions. b, Benefits of models with competency awareness. c, New objective to be 
considered in system design. Competency awareness adds a new dimension and changes the pareto frontier we are looking for. Different colours represent 
different uncertainty estimation methods used. Data points are for illustration only.
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Other use cases. Sometimes the interest in uncertainty estima-
tion also lies in modelling the uncertainty according to its sources. 
Aleatoric uncertainty captures noise inherent in the observations, 
while epistemic uncertainty measures the uncertainty in the model 
parameters35,36. The ability of modelling different sources of uncer-
tainty enables more fine-grained control (for example, leveraging 
the aleatoric uncertainty to make the model more robust to noisy 
data). There is also a line of research on out-of-distribution (OOD) 
detection37 that detects when a sample fed in is not drawn from the 
training distribution38. This helps the model to identify the situa-
tion on which it is not trained, such as when a cat is on the hood 
of the car. It is also important for the defence of malicious attacks 
because it is easier to manipulate the model with something it has 
never seen before. Distinguishing correct classification and incor-
rect classification and distinguishing in- and out-of-distribution 
samples can usually be done with the same methods23,39 or very sim-
ilar methods20,38. We anticipate that the reason is that, given enough 
model capacity, the samples in the test set are misclassified because 
they are not well covered by the training set, or are far from the 
high-density area of the training data distribution, which is similar 
to the out-of-distribution case.

Among all the approaches for uncertainty estimation with different 
theoretical justification and implementation overhead, the maximum 
softmax probability is the most popular way of uncertainty estima-
tion21,39. It directly uses the maximum of the softmax probability 
produced by the softmax layer that assigns decimal probabilities to 
each class in a classification network. Although the networks are not 
trained explicitly for uncertainty estimation, maximum softmax prob-
ability can be an effective confidence score because commonly used 
loss functions are strictly proper scoring rules for uncertainty esti-
mation23. The maximum softmax probability is shown to be a strong 
baseline for selective prediction but is poorly calibrated for confidence 
calibration. However, the calibration issue can be largely fixed by 
temperature scaling21. Temperature scaling uses a scalar parameter to 
scale the input to the softmax function and does not affect the model 
accuracy. It is a state-of-the-art confidence calibration technique that 
performs similarly to other alternatives39. (We use the maximum soft-
max probability with temperature scaling in our analysis below.)

Potential impact of hardware developments
There is a continued interest in using larger, more powerful 
and more resource-demanding networks such as BigGAN40 and 
BERT41. As well as making neural networks more parameter effi-
cient or floating-point operations (FLOPs) efficient42, considerable 
effort has been focused on developing more powerful and more 
energy-efficient hardware platforms to accommodate bigger DNN 
models efficiently. In particular, the computation overhead mostly 
lies in the movement of data between function units and different 
memory hierarchies43, and there are two general approaches to try 
to address this issue.

First, there are customized application-specific hardware accel-
erators that come with larger memory and higher computation 
density, such as Google TPU v3 (ref. 9) and Intel Movidius (ref. 10). 
Second, there are emerging hardware architectures, such as near-data 
processing44 and computing-in-memory (CiM) accelerators45,46, 
which use novel devices to reduce the data movement between 
functional units and the memory array. However, a major concern 
with using such emerging devices is their non-ideal behaviour, and 
these devices typically exhibit larger variations than conventional 
metal–oxide–semiconductor field-effect transistors (MOSFETs). 
Device-to-device variation is, in particular, dominant when using 
the CiM architecture for inference. Larger device-to-device varia-
tion leads to a larger overlap between two neighbouring current lev-
els, limiting the number of bits a device can represent.

Figure 2 summarizes how the memory capacity of DNN accel-
erator architectures and the memory window of emerging memory 

devices (typically used in CiM) has progressed over the last few 
years. In Fig. 2d, we use a measure of memory window (Ion/Ioff ratio) 
to capture the device-to-device variation.

It is important to understand how such advances in hardware 
might affect the uncertainty estimation quality of neural networks, 
and we thus consider the potential impact of two types of compu-
tation paradigm: traditional von Neumann architectures (which 
separate computation and memory) and CiM architectures. In 
particular, we explore the two most prominent trends: increasing 
memory size due to continuous technology scaling and advanced 
architecture design, and the quantization and device-to-device vari-
ations prominent in emerging device-based CiM accelerators.

Impact of memory size. With increasing on-chip memory size, the 
off-chip memory access that significantly affects the power con-
sumption and latency can be reduced. This margin can then be used 
to accommodate bigger and more powerful neural networks.

To study how a change of neural network size may affect the 
uncertainty estimation quality, we varied the size of popular network 
structures DenseNet47 and WideResNet48 by changing their depth 
and width. Figure 3a shows the trend of uncertainty estimation 
quality based on the maximum softmax39 with respect to the mem-
ory footprint of the model parameters. It highlights that the ability 
of identifying wrong prediction measured by AUPR decreases as the 
model size increases. This may appear counter intuitive, but the rea-
son is that a bigger model usually comes with higher accuracy. The 
easy-to-identify wrong predictions become correct predictions, and 
then the remaining wrong predictions are more difficult to identify. 
Considering the overall selective prediction performance measured 
by AURC (Fig. 3b), we see that the performance (with AURC, the 
lower the better) improves with a bigger model, which suggests that 
the improved accuracy has a stronger effect on the selective predic-
tion performance.

This leads to our first key observation: with increasing model 
memory footprint, it is increasingly difficult to identify wrong 
predictions, but the overall selective prediction performance still 
improves due to increased accuracy.

Confidence calibration has a different trend with respect to 
memory footprint (Fig. 3b,c). In the standard setting without cali-
bration measure, both DenseNet and WideResNet on both datasets 
show a clear increase-then-decrease trend. The trend can be affected 
by many factors. We anticipate that the two most important fac-
tors are increasing over-confidence and improved accuracy. With 
increasing model size, the well-known over-confidence issue leads 
to higher calibration error per incorrect prediction. Meanwhile, the 
model gets higher accuracy and the number of incorrect predic-
tions decreases. After temperature scaling is applied, the calibra-
tion error is effectively reduced confirming that current techniques 
are able to do a decent job on providing calibrated confidence 
scores. Interestingly, the resulting error is not proportional to the 
original error and does not show a consistent strong trend with 
memory footprint, though both DenseNet and WideResNet show a 
decrease-and-then-increase trend on Cifar100.

This leads to our second key observation: the commonly used 
temperature scaling can erase overlarge calibration errors and 
change the impact of memory footprint on calibration quality.

Impact of in-memory computing based on emerging devices. 
The emerging devices, such as memristors, that are typically used 
in in-memory computing require weights to be quantized to match 
their finite state representations, and induce device-to-device vari-
ations that affect the weight values. To study their impact on the 
uncertainty estimation quality, we first train models in floating-point 
and then simulate the inference stage assuming an emerging 
devices-based crossbar architecture. The maximum device current 
is a representative current for emerging devices such as ferroelectric  
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field-effect transistors (FeFETs) and memristors (for example, 
resistive random-access memory (RRAM)). The device-to-device 
variation typically follows a Gaussian distribution49–51. We use the 
RRAM device model in ref. 51 as a reference while modelling the 
variation. In principle, the Gaussian type of device-to-device varia-
tion exists in most emerging devices (such as FeFETs, RRAMs, and 
spintronic devices). Therefore, our exploration is general and could 
be extended to other emerging devices.

The device-to-device variation induces variation in the read cur-
rent for the devices, ranging from 0 nA to 10,000 nA, and we use 
this current variation in our simulations. One of the representative 
read current variations was reported as 800 nA in ref. 51. However, 
device variation can typically be modulated by a write-and-verify 
mechanism. Therefore, device variation can be controlled to some 
extent by the number of write pulses allowed. Different current lev-
els can also be achieved by applying different write pulse schemes. 
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As such, we deviate from these reported measurements and sweep 
the number of current levels and device read current variation in 
order to evaluate the impact of different device-to-device variation.

Typically, one crossbar array can only be used to compute a sub-
set of convolution operations. After the crossbar computation, ana-
logue to digital converters (ADCs) are used to convert the analogue 
signal to a digital signal for accumulation. Recent work has shown 
that these ADCs can be eliminated to further reduce the energy52, 

and ADCs are only required after the entire convolution operation. 
We apply this architecture in our study. In the architecture simula-
tion, we apply a 10-bit ADC to ensure the number of bits for activa-
tion is larger than the number of bits for weights.

Figure 3e-h depicts the quality of uncertainty estimation of 
the same model with different levels of quantization and current 
variation. Both quantization and device-to-device variation lead 
to increasing AUPR, but the selective prediction performance 
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becomes worse together with the accuracy. For the confidence cali-
bration, the error grows significantly when the number of quantiza-
tion levels is too small, or when the device-to-device variation is 
too big. The model performance is in general improved with more 
levels and smaller variation but there is a saturation point where the 
performance stops to improve further. For the calibrated model, the 
calibration error is reduced greatly while the impact from quantiza-
tion and variation also decreases.

This leads to our third key observation: with increased num-
ber of quantization levels and reduced device-to-device variation, 
overall selective prediction performance improves due to the higher 
accuracy, but it is more difficult to identify wrong predictions as 
measured by AUPR. In contrast to the accuracy, when temperature 
scaling is applied, the confidence calibration performance is not 
sensitive to the quantization and device-to-device variation in a 
larger range of settings.

Note that these observations are not intended to be conclusive, 
but rather examples to show that uncertainty estimation has unique 
characteristics that need to be considered along with the hardware 
advancement.

challenges of uncertainty estimation on hardware designs
Though the maximum softmax probability is a well-established 
approach for uncertainty estimation with competitive performance 
and negligible cost, more sophisticated methods are sought. Figure 
4 highlights recent developments of uncertainty estimation meth-
ods. Popular new approaches, such as Bayesian analysis53–57, Monte 
Carlo dropout26,58 and ensemble23,59, can achieve better estimation 
quality or generalization than the maximum softmax probability, 
but require much greater hardware resources.

A remedy for high hardware resource demand is to use relatively 
lightweight estimation methods. One of the most successful attempts 
is learned uncertainty estimation where the model, as a whole or in 
part, is explicitly optimized to provide accurate confidence score in 
addition to the original prediction task. We categorize these meth-
ods into two types based on whether extra computation is required.

The first type, which does not need extra computation in the 
inference stage, typically uses the maximum softmax probability 
and improves upon it through customized training with carefully 
designed uncertainty-aware optimization objectives38,60,61. Platt scal-
ing and its variants can also be applied for confidence calibration 
with negligible overhead21,62. For the second type, which requires 
extra computation, a straightforward idea is to add a module that 
is specifically optimized for uncertainty estimation objectives. 
Such an uncertainty estimation model typically uses embedding  

properties of the original prediction networks so that clustering- 
based methods can be applied. Meanwhile, it minimizes the over-
head by sharing computation with the prediction model63,64. Note 
that, in either method, training the prediction model with an uncer-
tainty objective may lead to compromised prediction accuracy22.

Hardware challenges. Most uncertainty estimation methods come 
with considerable computation or storage overhead. One of the rea-
sons behind this is that current development in competency-aware 
neural networks is mostly driven by performance merit. Significant 
differences can also be found among the uncertainty estimation 
methods, especially the workload characteristic. For example, 
the uncertainty estimation process may require repetition of the 
DNN-type computation with a different set of weights23, a k-nearest 
neighbours64 or a backward pass to compute the gradient even in 
inference stage65.

Since competency-aware neural network design is a relatively 
new direction, there is no consensus on which approach among all 
possible solutions mentioned above is the best for each scenario. As 
a result, it is challenging to adopt these methods for efficient imple-
mentation on hardware. On most dedicated neural network accel-
erators, the workload that cannot be accelerated effectively could 
easily become the performance bottleneck. The fact that the charac-
teristics of some of these uncertainty estimation workloads are dis-
tinct from normal neural network workload raises the question that 
how practical these uncertainty estimation methods are given the 
current hardware platform and how we should accommodate these 
workloads in the future. Even if the characteristics of uncertainty 
estimation workload appear to be the same with the original neural 
network workload (for example, Monte Carlo dropout, which does 
multiple forward passes on the same network with dropout applied), 
the roofline model changes and the workload becomes paralleliz-
able. As such, building competency-aware neural networks leads to 
changes in the workload on hardware and imposes new challenges 
that cannot be solved in the software level alone.

Multi-objective optimization. Despite all the advances in uncer-
tainty estimation, a more fundamental problem is that uncertainty 
estimation is an optimization objective different from the predic-
tion objective theoretically. As a result, given a fixed resource bud-
get, there exists a trade-off between the prediction performance and 
the uncertainty estimation quality22. In order to not compromise the 
prediction performance, we expect an increasing resource demand 
from competency-aware neural networks especially when targeting 
a higher level of competency awareness.

Prediction model replacement
(e.g., significant change of the model) 

Computation overhead
(e.g., compute gradient)

Storage overhead
(e.g., extra parameter) 

Overhead at training stage
(e.g., new loss or new hyper-parameter)

Gradient-based [ref. 65].

Perturbation-based [ref. 32]

Bayesian deep learning [ref. 36]

Distance-based [ref. 64]

Temperature scaling [ref. 21]

Maximum softmax probability [ref. 39]

Ensemble [ref. 23]
MC dropout [ref. 87]

Uncertainty-aware training for calibration [ref. 33]

Uncertainty estimation for medical images [ref. 58]

Uncertainty-aware training for selective prediction [ref. 69]

Hybrid models with invertible transformation [ref. 74]

Structured dropout [ref. 122]

Stochastic batch normalization [ref. 123]

Selective prediction with portfolio theory [ref. 124]
Residual estimation [ref. 125]

Year
2019 2020201820172016

Fig. 4 | timeline of developments in uncertainty estimation methods. Notable recent neural network uncertainty estimation methods are highlighted. 
Most of these incur overheads and these are indicated by the coloured squares. Data are from refs. 21,23,32,33,36,39,58,64,65,69,74,87,122–125.
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Future directions
To address all of the challenges involved in building competency- 
aware neural networks, innovations in terms of hardware, software 
and hardware–software co-design are required.

Hardware. As well as increasing a neural network’s workload, 
competency awareness can change the characteristics of an exist-
ing workload and boost efficiency. With the mechanism of early 
exits66, for relatively simple input, if a model is confident to make a 
prediction in early layers, the inference can be terminated and the 
computation on later layers is thus skipped. Considering the fact 
that most inputs to neural networks are relatively simple67, there 
is a high upper bound for potential computation saving. With the 
uncertainty estimation quality as the key factor, such an early exit 
method boosts the throughput with neglectable performance loss68. 
While the overall computation requirement drops significantly, the 
storage requirement for model parameters increases marginally due 
to the uncertainty estimation overhead.

The trend of decoupled prediction and uncertainty estimation 
objectives33,63,64 can be formulated as a new problem: what is the 
best hardware resource partition for them? With limited hardware 
resources, a carefully designed trade-off among various factors 
including accuracy, competency awareness, cost, and energy effi-
ciency is critical. In this regard, there are two key problems to be 
considered by hardware designers.

First, what is the difference between the workload of prediction 
and uncertainty estimation? The variety of different approaches for 
neural network uncertainty estimation makes the problem more dif-
ficult, as we see that some methods have the same type of workload 
with the prediction (for example, ensemble or dropout) while some 
others have significant differences (for example, distance-based). 
We found that ensemble and dropout are most computation exten-
sive but can be effectively accelerated with parallelized process units 
where possible. When gradient is needed, the memory requirement 
would be increased greatly for saving all the intermediate results. 
Other more unstructured computation may better fit into a general 
processing unit instead of a dedicated accelerator.

Second, how do hardware platforms affect the performance 
of prediction and uncertainty estimation? For example, while the 
resource–performance relations are benchmarked frequently for 
prediction model68, the correlation between uncertainty estima-
tion and hardware resources remains unclear. As discussed above, 
competency-awareness of neural networks can have some inter-
esting and maybe unexpected behaviour due to the memory con-
straint, quantization and device-to-device variation, which requires 
hardware–software co-design. In addition, and as shown in Fig. 
3, the saturation point of the number of quantization levels and 
device-to-device variation for uncertainty estimation has not been 
reached by the state-of-the-art49,51. Therefore, we expect that, as the 
fabrication processes of emerging devices mature, the variation will 
reduce, and a higher level of uncertainty estimation quality can be 
achieved. When a new type of device is invented, it usually suffers 
from large device-to-device variations before the fabrication process 
becomes mature. As such they should first be used in applications 
where the key metric is less variation sensitive, such as calibrated ECE.

Software. The training methods of both prediction and uncertainty 
estimation have new considerations to gain maximum performance 
from a certain resource budget. The new training methodologies 
for both prediction model and uncertainty estimation model can 
be treated as uncertainty-aware training33,36 which may replace 
the original training methodology for competency-aware neural 
networks.

Partially motivated by the compatibility with conventional devel-
opment tools and training methods, most existing uncertainty esti-
mation approaches only add a new uncertainty objective but leave 

the prediction objective untouched33,38,63 during training. However, 
when we take uncertainty estimation into account, even the predic-
tion objective needs new consideration. For example, training with 
a conventional loss function assigns equal weights to all training 
instances and try to minimize the average loss. When we assume the 
model has the capability to learn the desired function, such training 
methodology should work very well.

However, if there are some difficult cases in the input that the 
model just does not have enough capacity or data to learn, forcing 
the model to minimize the average loss not only cannot solve the 
difficult cases (at least in terms of generalization) but also harms the 
learning on the rest of cases. Instead of forcing the model to solve 
all cases, it is more reasonable to let it give up the difficult cases 
and focus on the majority easy or normal cases especially in a selec-
tive prediction scenario. As one of the major benefits comes with 
uncertainty estimation, such a problem needs to be solved for bet-
ter prediction model training. This promising direction is partially 
explored in some recent works where customized loss functions 
are used69. In addition, as the uncertainty estimation can also be 
affected by hardware variations, the quantization/variation-aware 
training that has been used for the conventional prediction model70 
should also be used for training the uncertainty estimation model.

Another shared property of most current solutions for uncertainty 
estimation is that they make little change to the model architecture. 
From ResNet71 and DenseNet47 to weight-agnostic neural networks72 
and HoloGAN73, the advances in neural network architectures suggest 
that the inductive biases from neural network architectures can be 
critical for model performance. Some initial attempts use a branch-out 
structure on the original prediction model63. However, some funda-
mental change of the model architecture, or even model type, may be 
needed to achieve a higher level of competency-awareness. There are 
successful attempts using invertible neural networks as a theoretically 
sound approach to do out-of-distribution detection74. Other more 
practical approaches include better ways to represent and memo-
rize experience about correct predictions and wrong predictions so 
that the model can avoid making same mistake twice. This ability is 
important because it is common that operators catch the mistakes of 
a deployed model, but do not have an easy way to prevent the same 
mistakes happening again.

Hardware–software co-design. While the challenges can be 
partially addressed from the software or hardware perspective 
individually, we believe there is substantial space for hardware–
software co-design of competency-aware neural networks based on  
three reasons.

First, although the network architecture matters, the low-level 
structure or hyper-parameters, such as the number of layers, 
number of filters, input dimension, numerical precision, usually 
have design flexibilities. As shown in Fig. 3, the change in model 
hyper-parameters leads to a smooth curve of uncertainty estimation 
quality. Meanwhile, certain levels of uncertainty estimation quality 
can be achieved with various combinations of these parameters.

Second, it has been shown that a small change in hardware design 
or network architecture can lead to significant efficiency change in 
a machine learning production workload75,76. As a result, instead 
of conducting model design and hardware design separately, an 
end-to-end exploration in both hardware space and software space 
promises better trade-off between uncertainty estimation quality 
and the resource requirement.

Third, for neural networks without competency awareness, there 
has been a transition from basic network design77, optimized net-
work design71, neural architecture search (NAS)78, hardware-aware 
NAS79, to hardware–software co-exploration80. Such a trend vali-
dates the practical benefits of hardware–software co-design and 
establishes a potential path for the transition of competency-aware 
neural networks.
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Even with great potential, sophisticated hardware–software 
co-design for competency-aware neural networks is not straightfor-
ward. As of today, even the hardware–software co-design of ‘vanilla’ 
neural networks takes significant expertise and labour due to the 
high-dimensional search space and the lack of accurate modelling 
especially for the performance of neural networks. Compared with 
existing hardware–software co-design techniques for neural net-
works, co-design for competency-aware neural networks means an 
additional uncertainty-related objective and enlarged design space 
associated with uncertainty estimation.

It is expected that competency awareness will be integrated into these 
existing hardware–software co-exploration frameworks in multiple 
ways to work as uncertainty-aware hardware–software co-exploration. 
First, the uncertainty estimation model can be searched separately and 
then combined with the prediction model. Second, the whole model 
can be searched end-to-end in a multi-objective optimization setting. 
In either way, proper heuristics based on the understanding of uncer-
tainty estimation can be adopted to facilitate the search process. Yet 
there are still considerable challenges. First, NAS that only aims at the 
conventional accuracy metric already suffers from long search time 
and high computation cost, and the additional competency-awareness 
objective would make it even worse. Second, many uncertainty esti-
mation methods break the structure of stacked regular layers in the 
vanilla neural network and result in unstructured computation and 
complex scheduling problems25,63,74. Third, the various choice of 
uncertainty estimation methods and their non-differentiable nature 
make it hard to fit them into the state-of-the-art differentiable NAS81.

Building competency-aware neural networks may lead to a whole 
spectrum of changes to current neural networks including the training 
algorithm, model architecture, and eventually the workload on hard-
ware. The uncertainty estimation methods that stand the test of time 
will be integrated into the design pipeline of the competency-aware 
neural-network-based system starting from the hardware design level. 
We anticipate that, to better handle uncertainty estimation, future 
hardware needs to accommodate heavier and more diverse work-
loads found in current uncertainty estimation methods, potentially 
including more irregular computation patterns72, more complex non-
linear activation operations other than ReLU61 and irregular memory 
access64. Hardware–software co-design will need to be extended to 
optimize both conventional performance and competency awareness.

conclusions
It is increasingly unrealistic to train models sufficiently in all pos-
sible scenarios to deploy deep neural networks in critical practical 
tasks; building competency-aware neural networks is an intuitive 
and effective solution. At the same time, competency awareness is 
not the only property needed to build trusted DNN-based systems. 
Other important components include explainability of prediction 
and uncertainty estimation, robustness with or without defence 
against adversarial attacks82–84 and privacy preservation85,86.

As the primary tool to enable competency awareness of neu-
ral networks, uncertainty estimation is successful at preventing 
silent mistakes, providing calibrated confidence scores, and even 
improving sample efficiency for reinforcement learning87. Building 
competency-aware neural networks may though lead to substantial 
changes to both the amount and the characteristics of the workload, 
and these challenges call for innovations in terms of hardware, soft-
ware, and, in particular, hardware–software co-design.
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