
PersPective
https://doi.org/10.1038/s41928-020-00476-7

1Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA. 2IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, USA. 3Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou,
China. ✉e-mail: xiaoweixu.ai@gmail.com; yshi4@nd.edu

Deep neural networks (DNNs) have achieved state-of-the-art
performance in areas such as computer vision, machine
translation, and speech recognition, and have been suc-

cessfully integrated into various commercial products1–5. Recent
advances have also highlighted their potential for solving challeng-
ing tasks including scene representation and rendering6, naviga-
tion7, and visual question answering8. These developments have
been accompanied by a surge in the creation of DNN-specific
hardware accelerators with a wide range of size, power and capac-
ity9–15. However, a key problem in adopting DNNs in real-world
mission-critical applications (and possibly many artificial intelli-
gence systems based on other approaches) is the lack of competency
awareness. Even if cutting-edge models trained with a large amount
of data are used on platforms with virtually unlimited hardware
resources, the complicated nature of practical problems, and the
long tail of data distribution on which the models are potentially
not trained or evaluated, can lead to the failure of DNNs — and this
failure often happens silently16.

This is in sharp contrast to the competency awareness of humans.
When a person observes and makes predictions their actual deci-
sion is based on a most likely prediction and also an associated
estimation of competency or confidence. Doctors will, for example,
conduct further investigations whenever they are in doubt about a
diagnosis, even when their best guess is a simple flu, and drivers will
slow down when they cannot confidently recognize a traffic sign.
Being overconfident or overcautious can though lead to mistakes or
inferior efficiency.

In competency-aware neural networks (illustrated in Fig. 1a with
an application in traffic sign detection), the competency assessment
provides extra information that informs the decision-making model
when the prediction is not reliable. Appropriate strategies, such as
asking for human intervention or using a conservative action, can
be then used to ensure safety. In order for people to trust DNNs, it
is important to equip DNNs with good self-awareness of their task
competency. Without such competency awareness, the completion

of a target task will still need to be inspected by a human expert in
order for it to be reliable in critical tasks, even if the prediction is
reasonably accurate.

Though such ideas predate the prevalence of DNNs17,18, consid-
erable effort has recently been focused on providing an accurately
quantified score representing the confidence of a neural network
prediction through uncertainty estimation19–24. The confidence
score is usually a scalar normalized to [0,1] where wrongly predicted
samples are expected to be assigned with low confidence scores and
correctly predicted ones are expected to be assigned with high con-
fidence scores25. (Confidence is the additive inverse of uncertainty
with respect to 1, so they are used interchangeably in the literature.)

The confidence score (either in its fine-grained form or coarse-
grained form) is increasingly used to enable the competency-
awareness of DNNs, and such DNNs offer capabilities that are
crucial for their application in critical tasks (Fig. 1b), including
medical diagnosis and autonomous vehicles26–28. Competency
awareness will be an increasingly important aspect of DNNs in the
next decade, especially for those deployed in commercial products
where hardware costs matter and where legal and responsibility
issues may arise29–31.

Uncertainty estimation of neural networks appears to offer a
route to competency-aware neural networks, if the uncertainty esti-
mation is accurate enough. However, with the ever-increasing size
of neural network models, and the pressure it places on hardware
accelerators, little is known about whether hardware designs will
affect the uncertainty estimation quality, and vice versa. The pursuit
of competency awareness introduces a new objective in DNN-based
systems design (Fig. 1c). In this Perspective, we examine recent
solutions for competency-aware neural networks, and show that
hardware advances do affect the uncertainty estimation quality
and this needs to be taken into consideration by neural architects.
We discuss the challenges involved in building competency-aware
neural networks in resource-constrained hardware platforms, and
explore promising approaches to address them.

Hardware design and the competency awareness
of a neural network
Yukun Ding1, Weiwen Jiang   1, Qiuwen Lou1, Jinglan Liu1, Jinjun Xiong2, Xiaobo Sharon Hu1,
Xiaowei Xu   3 ✉ and Yiyu Shi   1 ✉

The ability to estimate the uncertainty of predictions made by a neural network is essential when applying neural networks to
tasks such as medical diagnosis and autonomous vehicles. The approach is of particular relevance when deploying the networks
on devices with limited hardware resources, but existing competency-aware neural networks largely ignore any resource con-
straints. Here we examine the relationship between hardware platforms and the competency awareness of a neural network.
We highlight the impact of two key areas of hardware development — increasing memory size of accelerator architectures and
device-to-device variation in the emerging devices typically used in in-memory computing — on uncertainty estimation quality.
We also consider the challenges that developments in uncertainty estimation methods impose on hardware designs. Finally,
we explore the innovations required in terms of hardware, software, and hardware–software co-design in order to build future
competency-aware neural networks.

Nature eLectroNicS | www.nature.com/natureelectronics

mailto:xiaoweixu.ai@gmail.com
mailto:yshi4@nd.edu
http://orcid.org/0000-0002-9004-487X
http://orcid.org/0000-0002-1046-6379
http://orcid.org/0000-0002-6788-9823
http://crossmark.crossref.org/dialog/?doi=10.1038/s41928-020-00476-7&domain=pdf
http://www.nature.com/natureelectronics

PersPective NaTure elecTroNics

uncertainty estimation for competency awareness
Competency-aware neural networks are dominated by uncertainty
estimation that gives a confidence score r normalized to [0, 1] as a
direct and interpretable indication of the neural network’s compe-
tency on given input x. Ideally, neural networks with competency
awareness should know perfectly whether they can make the correct
prediction on a given input, which can be defined as r=0 for wrong
prediction or incompetency and r=1 for correct prediction or com-
petency. In practice, the confidence score r is used in different use
cases, which are briefly described below.

Selective prediction. In selective prediction, with a confidence
score ri for each input xi, the model abstains from making prediction
on xi if ri is smaller than a given threshold. In this way, competency
awareness is used to avoid making decisions with low confidence.
The input on which the model is uncertain is forwarded to cor-
responding procedures that typically lead to the involvement of

human expertise or other models with higher capacity, or simply
give up on the specific cases. By selectively making predictions on
a subset of inputs, a given prediction model can achieve a much
higher accuracy to meet the requirements32. The ability of identify-
ing wrong predictions is usually measured by the area under the
precision-recall curve (AUPR) and the overall selective predic-
tion performance is measured by the area under the risk coverage
curve (AURC)25.

Confidence calibration. The aim of a confidence calibration is
to give a confidence score r∈[0, 1] equal to the probability of the
prediction being correct and thus directly interpretable. Besides
being used in the communications with human, the well-calibrated
bias-free confidence score is also necessary to build a standard inter-
face across various automatic decision-making modules21,33,34. The
quality of the confidence score is usually measured by the expected
calibration error (ECE21).

a

b
Design without uncertainty

Design with uncertainty

Accuracy

Hardware efficiency (e.g., latency)

Competency awareness

Pareto frontier with uncertainty

Pareto frontier without uncertainty

c

Normal action Conservative action Normal action Normal action

This is a special one.
My confidence is 0.1.

I saw this a lot.
My confidence is 0.999.

I'm pretty sure it's
a normal stop sign.

Stop sign Stop sign Stop sign Stop sign

No competency awareness Poor competency awareness Good competency awareness Human

Normal action Normal action Conservative action Conservative action

Nothing special,
my confidence is 0.9.

I have not seen this before,
my confidence is 0.2.

I don't know what it means,
a stop sign or a fake one?

None None None None

Prediction Competency assement

(A spanish stop sign)

Input

Prediction

ConfidenceUncertainty
estimation

Prediction
model

Human–machine communication and cooperation: provide accurate
confidence score that reflects the probability of prediction is correct

•

Online performance monitoring: estimate system performance without
ground truth (low confidence indicates low accuracy)
Reliable excution strategy: alarm for human assiance when the model is
in doubt

•

•

Fig. 1 | competency awareness of neural networks. a, Illustrative example of neural network competency awareness in traffic sign detection. Competency
awareness is critical in order for a machine to make human-like decisions. b, Benefits of models with competency awareness. c, New objective to be
considered in system design. Competency awareness adds a new dimension and changes the pareto frontier we are looking for. Different colours represent
different uncertainty estimation methods used. Data points are for illustration only.

Nature eLectroNicS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

PersPectiveNaTure elecTroNics

Other use cases. Sometimes the interest in uncertainty estima-
tion also lies in modelling the uncertainty according to its sources.
Aleatoric uncertainty captures noise inherent in the observations,
while epistemic uncertainty measures the uncertainty in the model
parameters35,36. The ability of modelling different sources of uncer-
tainty enables more fine-grained control (for example, leveraging
the aleatoric uncertainty to make the model more robust to noisy
data). There is also a line of research on out-of-distribution (OOD)
detection37 that detects when a sample fed in is not drawn from the
training distribution38. This helps the model to identify the situa-
tion on which it is not trained, such as when a cat is on the hood
of the car. It is also important for the defence of malicious attacks
because it is easier to manipulate the model with something it has
never seen before. Distinguishing correct classification and incor-
rect classification and distinguishing in- and out-of-distribution
samples can usually be done with the same methods23,39 or very sim-
ilar methods20,38. We anticipate that the reason is that, given enough
model capacity, the samples in the test set are misclassified because
they are not well covered by the training set, or are far from the
high-density area of the training data distribution, which is similar
to the out-of-distribution case.

Among all the approaches for uncertainty estimation with different
theoretical justification and implementation overhead, the maximum
softmax probability is the most popular way of uncertainty estima-
tion21,39. It directly uses the maximum of the softmax probability
produced by the softmax layer that assigns decimal probabilities to
each class in a classification network. Although the networks are not
trained explicitly for uncertainty estimation, maximum softmax prob-
ability can be an effective confidence score because commonly used
loss functions are strictly proper scoring rules for uncertainty esti-
mation23. The maximum softmax probability is shown to be a strong
baseline for selective prediction but is poorly calibrated for confidence
calibration. However, the calibration issue can be largely fixed by
temperature scaling21. Temperature scaling uses a scalar parameter to
scale the input to the softmax function and does not affect the model
accuracy. It is a state-of-the-art confidence calibration technique that
performs similarly to other alternatives39. (We use the maximum soft-
max probability with temperature scaling in our analysis below.)

Potential impact of hardware developments
There is a continued interest in using larger, more powerful
and more resource-demanding networks such as BigGAN40 and
BERT41. As well as making neural networks more parameter effi-
cient or floating-point operations (FLOPs) efficient42, considerable
effort has been focused on developing more powerful and more
energy-efficient hardware platforms to accommodate bigger DNN
models efficiently. In particular, the computation overhead mostly
lies in the movement of data between function units and different
memory hierarchies43, and there are two general approaches to try
to address this issue.

First, there are customized application-specific hardware accel-
erators that come with larger memory and higher computation
density, such as Google TPU v3 (ref. 9) and Intel Movidius (ref. 10).
Second, there are emerging hardware architectures, such as near-data
processing44 and computing-in-memory (CiM) accelerators45,46,
which use novel devices to reduce the data movement between
functional units and the memory array. However, a major concern
with using such emerging devices is their non-ideal behaviour, and
these devices typically exhibit larger variations than conventional
metal–oxide–semiconductor field-effect transistors (MOSFETs).
Device-to-device variation is, in particular, dominant when using
the CiM architecture for inference. Larger device-to-device varia-
tion leads to a larger overlap between two neighbouring current lev-
els, limiting the number of bits a device can represent.

Figure 2 summarizes how the memory capacity of DNN accel-
erator architectures and the memory window of emerging memory

devices (typically used in CiM) has progressed over the last few
years. In Fig. 2d, we use a measure of memory window (Ion/Ioff ratio)
to capture the device-to-device variation.

It is important to understand how such advances in hardware
might affect the uncertainty estimation quality of neural networks,
and we thus consider the potential impact of two types of compu-
tation paradigm: traditional von Neumann architectures (which
separate computation and memory) and CiM architectures. In
particular, we explore the two most prominent trends: increasing
memory size due to continuous technology scaling and advanced
architecture design, and the quantization and device-to-device vari-
ations prominent in emerging device-based CiM accelerators.

Impact of memory size. With increasing on-chip memory size, the
off-chip memory access that significantly affects the power con-
sumption and latency can be reduced. This margin can then be used
to accommodate bigger and more powerful neural networks.

To study how a change of neural network size may affect the
uncertainty estimation quality, we varied the size of popular network
structures DenseNet47 and WideResNet48 by changing their depth
and width. Figure 3a shows the trend of uncertainty estimation
quality based on the maximum softmax39 with respect to the mem-
ory footprint of the model parameters. It highlights that the ability
of identifying wrong prediction measured by AUPR decreases as the
model size increases. This may appear counter intuitive, but the rea-
son is that a bigger model usually comes with higher accuracy. The
easy-to-identify wrong predictions become correct predictions, and
then the remaining wrong predictions are more difficult to identify.
Considering the overall selective prediction performance measured
by AURC (Fig. 3b), we see that the performance (with AURC, the
lower the better) improves with a bigger model, which suggests that
the improved accuracy has a stronger effect on the selective predic-
tion performance.

This leads to our first key observation: with increasing model
memory footprint, it is increasingly difficult to identify wrong
predictions, but the overall selective prediction performance still
improves due to increased accuracy.

Confidence calibration has a different trend with respect to
memory footprint (Fig. 3b,c). In the standard setting without cali-
bration measure, both DenseNet and WideResNet on both datasets
show a clear increase-then-decrease trend. The trend can be affected
by many factors. We anticipate that the two most important fac-
tors are increasing over-confidence and improved accuracy. With
increasing model size, the well-known over-confidence issue leads
to higher calibration error per incorrect prediction. Meanwhile, the
model gets higher accuracy and the number of incorrect predic-
tions decreases. After temperature scaling is applied, the calibra-
tion error is effectively reduced confirming that current techniques
are able to do a decent job on providing calibrated confidence
scores. Interestingly, the resulting error is not proportional to the
original error and does not show a consistent strong trend with
memory footprint, though both DenseNet and WideResNet show a
decrease-and-then-increase trend on Cifar100.

This leads to our second key observation: the commonly used
temperature scaling can erase overlarge calibration errors and
change the impact of memory footprint on calibration quality.

Impact of in-memory computing based on emerging devices.
The emerging devices, such as memristors, that are typically used
in in-memory computing require weights to be quantized to match
their finite state representations, and induce device-to-device vari-
ations that affect the weight values. To study their impact on the
uncertainty estimation quality, we first train models in floating-point
and then simulate the inference stage assuming an emerging
devices-based crossbar architecture. The maximum device current
is a representative current for emerging devices such as ferroelectric

Nature eLectroNicS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

PersPective NaTure elecTroNics

field-effect transistors (FeFETs) and memristors (for example,
resistive random-access memory (RRAM)). The device-to-device
variation typically follows a Gaussian distribution49–51. We use the
RRAM device model in ref. 51 as a reference while modelling the
variation. In principle, the Gaussian type of device-to-device varia-
tion exists in most emerging devices (such as FeFETs, RRAMs, and
spintronic devices). Therefore, our exploration is general and could
be extended to other emerging devices.

The device-to-device variation induces variation in the read cur-
rent for the devices, ranging from 0 nA to 10,000 nA, and we use
this current variation in our simulations. One of the representative
read current variations was reported as 800 nA in ref. 51. However,
device variation can typically be modulated by a write-and-verify
mechanism. Therefore, device variation can be controlled to some
extent by the number of write pulses allowed. Different current lev-
els can also be achieved by applying different write pulse schemes.

2011 2012 2013 2014 2015 20162008 2017 2018 20192009 2010
10

100

1,000

10,000

100,000

M
em

or
y

ca
pa

ci
ty

 (k
B)

neuFlow [ref. 94]

Dadiannao [ref. 91]

Myriad 2 [ref. 108]

Diannao [ref. 90]

EIE [ref. 93]

ShiDiannao [ref. 96]
Ref. 95

Eyeriss [ref. 89]

TPU v1 [ref. 92]

Stripes [ref. 104]

Cambricon-X [ref. 15]

Ref. 101

SCNN [ref. 107]

Ref. 103

NullHop [ref. 106]

Bit Fusion [ref. 105]

Cambricon-S [99]

Ref. 100

Eyeriss v2 [ref. 11]
Ref. 102

Ref. 97

Cambricon [ref. 88]

Ref. 98

Year

0

5

10

15

20

25

30

35

40

45

M
em

or
y

ca
pa

ci
ty

 (M
B)

2012 2013 2014 2015 2016 20172008 2009 2011 2018 20192010

Stratix IV
EP4SGX230

Stratix V
5SGSD8

Stratix 10
GX 2800

Cyclone IV
EP4CGX150 Cyclone V

5CGXC9

Cyclone 10
10CX220

Arria II
EP2AGZ350

Arria V
5AGZME7

Arria 10
GX 900

AGI 022

Virtex 6
XC6VLX240T

Spartan 6
XC6SLX45

Kintex 7
XC7K355T

Virtex 7
XC7VX550T

Zynq
7010

Virtex UltraScale
XCVU160

Kintex UltraScale
XCKU060

Zynq 7100

Virtex UltraScale+
XCVU9P

Kintex UltraScale+
XCKU11P

Spartan-7
XC7S50

Year

0

5

10

15

20

25

30

35

M
em

or
y

ca
pa

ci
ty

 (G
B)

2011 2012 2013 2014 2015 20162008 2017 2018 20192009 2010

GTX 590 GTX 690
GTX TITAN

GTX TITAN Z

GTX 1080

TESLA P100

GTX
TITAN X

TESLA V100 GTX
TITAN RTX

TESLA T4

Year

TESLA P40

TESLA 1080Ti

2011 2012 2013 2014 2015 20162008 2017 2018 20192009 2010
10

100

1,000

10,000

100,000

M
em

or
y

w
in

do
w

 (I
on

/I o
ff r

at
io

)

Year

RRAM FeFET

a

b

c

d

ref. 115

ref. 114 ref. 113

ref. 116

ref. 117

ref. 121

ref. 119

ref. 120

ref. 118

ref. 112

ref. 111

Fig. 2 | trends in memory capacity and memory window. a–c, Progress in memory capacity of DNN accelerator architectures using application-specific
integrated circuit (ASIC) memory (a), field-programmable gate array (FPGA) memory (b), and graphics processing unit (GPU) memory (c). Memory
capacity is based on on-chip static random-access memory (SRAM) for ASIC and FPGA, and dynamic random-access memory (DRAM) for GPU.
d, Progress in the memory window of emerging memory devices (resistive random-access memory (RRAM) and ferroelectric field-effect transistors
(FeFET)). The memory window is based on the ratio of high resistance and low resistance of the device, which is a measure of the distinctness between
these two extreme current levels. The larger memory window means more levels could fit in two extreme levels, and less device-to-device variation. As
such, a larger memory window is desired. Data are from refs. 88–108 (a), ref. 109 (b), ref. 110 (c), refs. 111–121 (d).

Nature eLectroNicS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

PersPectiveNaTure elecTroNics

As such, we deviate from these reported measurements and sweep
the number of current levels and device read current variation in
order to evaluate the impact of different device-to-device variation.

Typically, one crossbar array can only be used to compute a sub-
set of convolution operations. After the crossbar computation, ana-
logue to digital converters (ADCs) are used to convert the analogue
signal to a digital signal for accumulation. Recent work has shown
that these ADCs can be eliminated to further reduce the energy52,

and ADCs are only required after the entire convolution operation.
We apply this architecture in our study. In the architecture simula-
tion, we apply a 10-bit ADC to ensure the number of bits for activa-
tion is larger than the number of bits for weights.

Figure 3e-h depicts the quality of uncertainty estimation of
the same model with different levels of quantization and current
variation. Both quantization and device-to-device variation lead
to increasing AUPR, but the selective prediction performance

a b

c d

AUPR

Better in identifing
wrong predictions

e
AURC

Better selective
prediction
performance

f

ECE

Better
calibration

g
ECE (calibrated)

Better
calibration

h

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40
0.1 0.3 0.5 1 3

Memory footprint (MB)
5 10 30 50 100

AU
PR

0.1 0.3 0.5 1 3
Memory footprint (MB)

0.1 0.3 0.5 1 3
Memory footprint (MB)

5 10 30 50 100

0.1 0.3 0.5 1 3
Memory footprint (MB)

5 10 30 50 100

0.30

0.25

0.20

0.15

0.10

0.05

0

AU
R

C

0.12

0.10

0.08

0.06

0.04

0.02

0

EC
E

EC
E

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0

Better in identifying
wrong predictions

DenseNet Cifar100
WideResnet Cifar100
DenseNet Cifar10
WideResnet Cifar10

DenseNet Cifar100
WideResnet Cifar100
DenseNet Cifar10
WideResnet Cifar10

Better selective
prediction
performance

Better
calibration

Better
calibration Cifar100

Cifar100 calibrated
Cifar10
Cifar10 calibrated

0.85

0.80

0.75

0.70

0.65

0.85

0.90
0.85
0.80
0.75
0.70
0.65

0

15
Number of levels

31 63127255 511
200

600
800

400

Vari
ati

on
 cu

rre
nt

(nA
)

0.8

0.6

0.4

0.2

0

15
Number of levels

31 63127255 511
200

600
800

400

Vari
ati

on
 cu

rre
nt

(nA
)

0.5

0.4
0.3

0.2

0

15
Number of levels

31 63127255 511
200

600
800

400

Vari
ati

on
 cu

rre
nt

(nA
)

0.12
0.10
0.08
0.06
0.04
0.02

0

15
Number of levels

31 63127255 511
200

600
800

400

Vari
ati

on
 cu

rre
nt

(nA
)

0.6
0.5
0.4
0.3
0.2
0.1

0.060
0.055
0.050
0.045
0.040
0.035
0.030
0.025
0.020

0.45
0.40
0.35
0.30
0.25
0.20
0.15

Fig. 3 | uncertainty-related performance with respect to memory footprint, quantization and device-to-device variation. a, Area under precision-recall
(AUPR) with respect to memory footprint. b, Area under risk-coverage (AURC) with respect to memory footprint. c, Expected calibration error (ECE), and
ECE after calibration, with respect to memory footprint of DenseNet. d, ECE, and ECE calibration, with respect to memory footprint of WideResNet. Curves
are hand drawn to highlight the trend. e–h, AUPR (e), AURC (f), ECE (g), and ECE after calibration (h) with respect to quantization and device-to-device
variation. Only DenseNet Cifar100 results are shown here for clarity; the results for other settings, as well as full details of how this analysis was
performed, can be found in the Supplementary Information.

Nature eLectroNicS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

PersPective NaTure elecTroNics

becomes worse together with the accuracy. For the confidence cali-
bration, the error grows significantly when the number of quantiza-
tion levels is too small, or when the device-to-device variation is
too big. The model performance is in general improved with more
levels and smaller variation but there is a saturation point where the
performance stops to improve further. For the calibrated model, the
calibration error is reduced greatly while the impact from quantiza-
tion and variation also decreases.

This leads to our third key observation: with increased num-
ber of quantization levels and reduced device-to-device variation,
overall selective prediction performance improves due to the higher
accuracy, but it is more difficult to identify wrong predictions as
measured by AUPR. In contrast to the accuracy, when temperature
scaling is applied, the confidence calibration performance is not
sensitive to the quantization and device-to-device variation in a
larger range of settings.

Note that these observations are not intended to be conclusive,
but rather examples to show that uncertainty estimation has unique
characteristics that need to be considered along with the hardware
advancement.

challenges of uncertainty estimation on hardware designs
Though the maximum softmax probability is a well-established
approach for uncertainty estimation with competitive performance
and negligible cost, more sophisticated methods are sought. Figure
4 highlights recent developments of uncertainty estimation meth-
ods. Popular new approaches, such as Bayesian analysis53–57, Monte
Carlo dropout26,58 and ensemble23,59, can achieve better estimation
quality or generalization than the maximum softmax probability,
but require much greater hardware resources.

A remedy for high hardware resource demand is to use relatively
lightweight estimation methods. One of the most successful attempts
is learned uncertainty estimation where the model, as a whole or in
part, is explicitly optimized to provide accurate confidence score in
addition to the original prediction task. We categorize these meth-
ods into two types based on whether extra computation is required.

The first type, which does not need extra computation in the
inference stage, typically uses the maximum softmax probability
and improves upon it through customized training with carefully
designed uncertainty-aware optimization objectives38,60,61. Platt scal-
ing and its variants can also be applied for confidence calibration
with negligible overhead21,62. For the second type, which requires
extra computation, a straightforward idea is to add a module that
is specifically optimized for uncertainty estimation objectives.
Such an uncertainty estimation model typically uses embedding

properties of the original prediction networks so that clustering-
based methods can be applied. Meanwhile, it minimizes the over-
head by sharing computation with the prediction model63,64. Note
that, in either method, training the prediction model with an uncer-
tainty objective may lead to compromised prediction accuracy22.

Hardware challenges. Most uncertainty estimation methods come
with considerable computation or storage overhead. One of the rea-
sons behind this is that current development in competency-aware
neural networks is mostly driven by performance merit. Significant
differences can also be found among the uncertainty estimation
methods, especially the workload characteristic. For example,
the uncertainty estimation process may require repetition of the
DNN-type computation with a different set of weights23, a k-nearest
neighbours64 or a backward pass to compute the gradient even in
inference stage65.

Since competency-aware neural network design is a relatively
new direction, there is no consensus on which approach among all
possible solutions mentioned above is the best for each scenario. As
a result, it is challenging to adopt these methods for efficient imple-
mentation on hardware. On most dedicated neural network accel-
erators, the workload that cannot be accelerated effectively could
easily become the performance bottleneck. The fact that the charac-
teristics of some of these uncertainty estimation workloads are dis-
tinct from normal neural network workload raises the question that
how practical these uncertainty estimation methods are given the
current hardware platform and how we should accommodate these
workloads in the future. Even if the characteristics of uncertainty
estimation workload appear to be the same with the original neural
network workload (for example, Monte Carlo dropout, which does
multiple forward passes on the same network with dropout applied),
the roofline model changes and the workload becomes paralleliz-
able. As such, building competency-aware neural networks leads to
changes in the workload on hardware and imposes new challenges
that cannot be solved in the software level alone.

Multi-objective optimization. Despite all the advances in uncer-
tainty estimation, a more fundamental problem is that uncertainty
estimation is an optimization objective different from the predic-
tion objective theoretically. As a result, given a fixed resource bud-
get, there exists a trade-off between the prediction performance and
the uncertainty estimation quality22. In order to not compromise the
prediction performance, we expect an increasing resource demand
from competency-aware neural networks especially when targeting
a higher level of competency awareness.

Prediction model replacement
(e.g., significant change of the model)

Computation overhead
(e.g., compute gradient)

Storage overhead
(e.g., extra parameter)

Overhead at training stage
(e.g., new loss or new hyper-parameter)

Gradient-based [ref. 65].

Perturbation-based [ref. 32]

Bayesian deep learning [ref. 36]

Distance-based [ref. 64]

Temperature scaling [ref. 21]

Maximum softmax probability [ref. 39]

Ensemble [ref. 23]
MC dropout [ref. 87]

Uncertainty-aware training for calibration [ref. 33]

Uncertainty estimation for medical images [ref. 58]

Uncertainty-aware training for selective prediction [ref. 69]

Hybrid models with invertible transformation [ref. 74]

Structured dropout [ref. 122]

Stochastic batch normalization [ref. 123]

Selective prediction with portfolio theory [ref. 124]
Residual estimation [ref. 125]

Year
2019 2020201820172016

Fig. 4 | timeline of developments in uncertainty estimation methods. Notable recent neural network uncertainty estimation methods are highlighted.
Most of these incur overheads and these are indicated by the coloured squares. Data are from refs. 21,23,32,33,36,39,58,64,65,69,74,87,122–125.

Nature eLectroNicS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

PersPectiveNaTure elecTroNics

Future directions
To address all of the challenges involved in building competency-
aware neural networks, innovations in terms of hardware, software
and hardware–software co-design are required.

Hardware. As well as increasing a neural network’s workload,
competency awareness can change the characteristics of an exist-
ing workload and boost efficiency. With the mechanism of early
exits66, for relatively simple input, if a model is confident to make a
prediction in early layers, the inference can be terminated and the
computation on later layers is thus skipped. Considering the fact
that most inputs to neural networks are relatively simple67, there
is a high upper bound for potential computation saving. With the
uncertainty estimation quality as the key factor, such an early exit
method boosts the throughput with neglectable performance loss68.
While the overall computation requirement drops significantly, the
storage requirement for model parameters increases marginally due
to the uncertainty estimation overhead.

The trend of decoupled prediction and uncertainty estimation
objectives33,63,64 can be formulated as a new problem: what is the
best hardware resource partition for them? With limited hardware
resources, a carefully designed trade-off among various factors
including accuracy, competency awareness, cost, and energy effi-
ciency is critical. In this regard, there are two key problems to be
considered by hardware designers.

First, what is the difference between the workload of prediction
and uncertainty estimation? The variety of different approaches for
neural network uncertainty estimation makes the problem more dif-
ficult, as we see that some methods have the same type of workload
with the prediction (for example, ensemble or dropout) while some
others have significant differences (for example, distance-based).
We found that ensemble and dropout are most computation exten-
sive but can be effectively accelerated with parallelized process units
where possible. When gradient is needed, the memory requirement
would be increased greatly for saving all the intermediate results.
Other more unstructured computation may better fit into a general
processing unit instead of a dedicated accelerator.

Second, how do hardware platforms affect the performance
of prediction and uncertainty estimation? For example, while the
resource–performance relations are benchmarked frequently for
prediction model68, the correlation between uncertainty estima-
tion and hardware resources remains unclear. As discussed above,
competency-awareness of neural networks can have some inter-
esting and maybe unexpected behaviour due to the memory con-
straint, quantization and device-to-device variation, which requires
hardware–software co-design. In addition, and as shown in Fig.
3, the saturation point of the number of quantization levels and
device-to-device variation for uncertainty estimation has not been
reached by the state-of-the-art49,51. Therefore, we expect that, as the
fabrication processes of emerging devices mature, the variation will
reduce, and a higher level of uncertainty estimation quality can be
achieved. When a new type of device is invented, it usually suffers
from large device-to-device variations before the fabrication process
becomes mature. As such they should first be used in applications
where the key metric is less variation sensitive, such as calibrated ECE.

Software. The training methods of both prediction and uncertainty
estimation have new considerations to gain maximum performance
from a certain resource budget. The new training methodologies
for both prediction model and uncertainty estimation model can
be treated as uncertainty-aware training33,36 which may replace
the original training methodology for competency-aware neural
networks.

Partially motivated by the compatibility with conventional devel-
opment tools and training methods, most existing uncertainty esti-
mation approaches only add a new uncertainty objective but leave

the prediction objective untouched33,38,63 during training. However,
when we take uncertainty estimation into account, even the predic-
tion objective needs new consideration. For example, training with
a conventional loss function assigns equal weights to all training
instances and try to minimize the average loss. When we assume the
model has the capability to learn the desired function, such training
methodology should work very well.

However, if there are some difficult cases in the input that the
model just does not have enough capacity or data to learn, forcing
the model to minimize the average loss not only cannot solve the
difficult cases (at least in terms of generalization) but also harms the
learning on the rest of cases. Instead of forcing the model to solve
all cases, it is more reasonable to let it give up the difficult cases
and focus on the majority easy or normal cases especially in a selec-
tive prediction scenario. As one of the major benefits comes with
uncertainty estimation, such a problem needs to be solved for bet-
ter prediction model training. This promising direction is partially
explored in some recent works where customized loss functions
are used69. In addition, as the uncertainty estimation can also be
affected by hardware variations, the quantization/variation-aware
training that has been used for the conventional prediction model70
should also be used for training the uncertainty estimation model.

Another shared property of most current solutions for uncertainty
estimation is that they make little change to the model architecture.
From ResNet71 and DenseNet47 to weight-agnostic neural networks72
and HoloGAN73, the advances in neural network architectures suggest
that the inductive biases from neural network architectures can be
critical for model performance. Some initial attempts use a branch-out
structure on the original prediction model63. However, some funda-
mental change of the model architecture, or even model type, may be
needed to achieve a higher level of competency-awareness. There are
successful attempts using invertible neural networks as a theoretically
sound approach to do out-of-distribution detection74. Other more
practical approaches include better ways to represent and memo-
rize experience about correct predictions and wrong predictions so
that the model can avoid making same mistake twice. This ability is
important because it is common that operators catch the mistakes of
a deployed model, but do not have an easy way to prevent the same
mistakes happening again.

Hardware–software co-design. While the challenges can be
partially addressed from the software or hardware perspective
individually, we believe there is substantial space for hardware–
software co-design of competency-aware neural networks based on
three reasons.

First, although the network architecture matters, the low-level
structure or hyper-parameters, such as the number of layers,
number of filters, input dimension, numerical precision, usually
have design flexibilities. As shown in Fig. 3, the change in model
hyper-parameters leads to a smooth curve of uncertainty estimation
quality. Meanwhile, certain levels of uncertainty estimation quality
can be achieved with various combinations of these parameters.

Second, it has been shown that a small change in hardware design
or network architecture can lead to significant efficiency change in
a machine learning production workload75,76. As a result, instead
of conducting model design and hardware design separately, an
end-to-end exploration in both hardware space and software space
promises better trade-off between uncertainty estimation quality
and the resource requirement.

Third, for neural networks without competency awareness, there
has been a transition from basic network design77, optimized net-
work design71, neural architecture search (NAS)78, hardware-aware
NAS79, to hardware–software co-exploration80. Such a trend vali-
dates the practical benefits of hardware–software co-design and
establishes a potential path for the transition of competency-aware
neural networks.

Nature eLectroNicS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

PersPective NaTure elecTroNics

Even with great potential, sophisticated hardware–software
co-design for competency-aware neural networks is not straightfor-
ward. As of today, even the hardware–software co-design of ‘vanilla’
neural networks takes significant expertise and labour due to the
high-dimensional search space and the lack of accurate modelling
especially for the performance of neural networks. Compared with
existing hardware–software co-design techniques for neural net-
works, co-design for competency-aware neural networks means an
additional uncertainty-related objective and enlarged design space
associated with uncertainty estimation.

It is expected that competency awareness will be integrated into these
existing hardware–software co-exploration frameworks in multiple
ways to work as uncertainty-aware hardware–software co-exploration.
First, the uncertainty estimation model can be searched separately and
then combined with the prediction model. Second, the whole model
can be searched end-to-end in a multi-objective optimization setting.
In either way, proper heuristics based on the understanding of uncer-
tainty estimation can be adopted to facilitate the search process. Yet
there are still considerable challenges. First, NAS that only aims at the
conventional accuracy metric already suffers from long search time
and high computation cost, and the additional competency-awareness
objective would make it even worse. Second, many uncertainty esti-
mation methods break the structure of stacked regular layers in the
vanilla neural network and result in unstructured computation and
complex scheduling problems25,63,74. Third, the various choice of
uncertainty estimation methods and their non-differentiable nature
make it hard to fit them into the state-of-the-art differentiable NAS81.

Building competency-aware neural networks may lead to a whole
spectrum of changes to current neural networks including the training
algorithm, model architecture, and eventually the workload on hard-
ware. The uncertainty estimation methods that stand the test of time
will be integrated into the design pipeline of the competency-aware
neural-network-based system starting from the hardware design level.
We anticipate that, to better handle uncertainty estimation, future
hardware needs to accommodate heavier and more diverse work-
loads found in current uncertainty estimation methods, potentially
including more irregular computation patterns72, more complex non-
linear activation operations other than ReLU61 and irregular memory
access64. Hardware–software co-design will need to be extended to
optimize both conventional performance and competency awareness.

conclusions
It is increasingly unrealistic to train models sufficiently in all pos-
sible scenarios to deploy deep neural networks in critical practical
tasks; building competency-aware neural networks is an intuitive
and effective solution. At the same time, competency awareness is
not the only property needed to build trusted DNN-based systems.
Other important components include explainability of prediction
and uncertainty estimation, robustness with or without defence
against adversarial attacks82–84 and privacy preservation85,86.

As the primary tool to enable competency awareness of neu-
ral networks, uncertainty estimation is successful at preventing
silent mistakes, providing calibrated confidence scores, and even
improving sample efficiency for reinforcement learning87. Building
competency-aware neural networks may though lead to substantial
changes to both the amount and the characteristics of the workload,
and these challenges call for innovations in terms of hardware, soft-
ware, and, in particular, hardware–software co-design.

Data availability
The data that support the findings of this study are available from
the corresponding author upon request.

code availability
The code that support the findings of this study are available from
the corresponding author upon request.

Received: 17 August 2019; Accepted: 18 August 2020;
Published: xx xx xxxx

references
 1. Zhu, J.-Y., Park, T., Isola, P. & Efros, A.A. Unpaired image-to-image

translation using cycle-consistent adversarial networks. In 2017 IEEE Int.
Conference on Computer Vision (ICCV) 2223–2232 (IEEE, 2017).

 2. Oord, A. V. D. et al. Wavenet: A generative model for raw audio. Preprint at
https://arxiv.org/abs/1609.03499 (2016).

 3. Wu, Y. et al. Google’s neural machine translation system: Bridging the gap
between human and machine translation. Preprint at https://arxiv.org/
abs/1609.08144 (2016).

 4. Johnson, J., Alahi, A. & Li, F.-F. Perceptual losses for real-time style transfer
and super-resolution. In Proc. European Conference on Computer Vision
694–711 (Springer, 2016).

 5. He, Y. et al. Streaming end-to-end speech recognition for mobile devices. In
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) 6381–6385 (IEEE, 2019).

 6. Ali Eslami, S. M. et al. Neural scene representation and rendering. Science
360, 1204–1210 (2018).

 7. Anderson, P. et al. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
3674–3683 (IEEE, 2018).

 8. Yi, K. et al. Neural-symbolic VQA: Disentangling reasoning from vision
and language understanding. In Advances in Neural Information Processing
Systems 31 (NIPS 2018) 1031–1042 (MIT Press, 2018).

 9. Cloud TPU (Google, 2020); https://cloud.google.com/tpu
 10. Intel Movidius Myriad X Vision Processing Unit Technical Specifications

(Intel, 2020); https://www.intel.com/content/www/us/en/products/
processors/movidius-vpu/movidius-myriad-x.html.

 11. Chen, Y.-H., Yang, T.-J., Emer, J. & Sze, V. Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices. IEEE J. Em. Sel. Top.
Circuits Syst. 9, 292–308 (2019).

 12. Guo, K. et al. Angel-eye: A complete design flow for mapping CNN onto
embedded fpga. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37,
35–47 (2017).

 13. Valavi, H., Ramadge, P. J., Nestler, E. & Verma, N. A 64-tile 2.4-mb
in-memory-computing CNN accelerator employing charge-domain
compute. IEEE J. Solid-State Circuits 54, 1789–1799 (2019).

 14. Xu et al. Scaling for edge inference of deep neural networks. Nat. Electron.
1, 216–222 (2018).

 15. Zhang, S. et al. Cambricon-x: An accelerator for sparse neural networks. In
49th Annual IEEE/ACM Int. Symposium on Microarchitecture https://doi.
org/10.1109/MICRO.2016.7783723 (IEEE, 2016).

 16. Holzinger, A., Biemann, C., Pattichis, C. S. & Kell, D. B. What do we need
to build explainable ai systems for the medical domain? Preprint at https://
arxiv.org/abs/1712.09923 (2017).

 17. Vovk, V., Gammerman, A. & Shafer, G. Algorithmic Learning in a Random
World (Springer, 2005).

 18. Papadopoulos, H., Vovk, V. & Gammermam, A. Conformal prediction with
neural networks. In 19th IEEE Int. Conference on Tools with Artificial
Intelligence (ICTAI 2007) 2, 388–395 (IEEE, 2007).

 19. DeVries, T. & Taylor, G.W. Leveraging uncertainty estimates for predicting
segmentation quality. Preprint at https://arxiv.org/abs/1807.00502 (2018).

 20. DeVries, T. & Taylor, G.W. Learning confidence for out-of-distribution
detection in neural networks. Preprint at https://arxiv.org/abs/1802.04865
(2018).

 21. Guo, C., Pleiss, G., Sun, Y. & Weinberger, K.Q. On calibration of modern
neural networks. In Proc. 34th International Conference on Machine
Learning 70, 1321–1330 (ACM, 2017).

 22. Malinin, A. & Gales, M. Predictive uncertainty estimation via prior
networks. In Advances in Neural Information Processing Systems 31 (NIPS
2018) 7047–7058 (MIT Press, 2018).

 23. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances
in Neural Information Processing Systems 30 (NIPS 2017) 6402–6413
(MIT Press, 2017).

 24. Geifman, Y., Uziel, G. & El-Yaniv, R. Bias-reduced uncertainty estimation
for deep neural classifiers. In Proc. 7th Int. Conference on Learning
Representations (ICLR) (ICLR, 2019).

 25. Ding, Y., Liu, J., Xiong, J. & Shi, Y. Revisiting the evaluation of uncertainty
estimation and its application to explore model complexity-uncertainty
trade-off. In CVPR workshop on Fair, Data Efficient and Trusted Computer
Vision 4–5 (IEEE, 2020).

 26. Roy, A. G., Conjeti, S., Navab, N. & Wachinger, C. Inherent brain
segmentation quality control from fully convnet Monte Carlo sampling. In
Int. Conference on Medical Image Computing and Computer-Assisted
Intervention 664–672 (Springer, 2018).

Nature eLectroNicS | www.nature.com/natureelectronics

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://cloud.google.com/tpu
https://www.intel.com/content/www/us/en/products/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/processors/movidius-vpu/movidius-myriad-x.html
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://arxiv.org/abs/1712.09923
https://arxiv.org/abs/1712.09923
https://arxiv.org/abs/1807.00502
https://arxiv.org/abs/1802.04865
http://www.nature.com/natureelectronics

PersPectiveNaTure elecTroNics

 27. Su, H., Yin, Z., Huh, S., Kanade, T. & Zhu, J. Interactive cell segmentation
based on active and semi-supervised learning. IEEE Trans. Med. Imaging
35, 762–777 (2015).

 28. McAllister, R. et al. Concrete problems for autonomous vehicle safety:
advantages of Bayesian deep learning. In Int. Joint Conferences on Artificial
Intelligence, 4745–4753 (IJCAI, 2017).

 29. Gasser, U. & Almeida, V. A. A layered model for ai governance. IEEE
Internet Comput. 21, 58–62 (2017).

 30. O’sullivan, S. et al. Legal, regulatory, and ethical frameworks for
development of standards in artificial intelligence (AI) and autonomous
robotic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 15, e1968 (2019).

 31. Shih, P.-J. Ethical guidelines for artificial intelligence (AI) development and
the new “trust” between humans and machines. Int. J. Autom. Smart
Technol. 9, 41–43 (2019).

 32. Liang, S., Li, Y. & Srikant, R. Enhancing the reliability of out-of-distribution
image detection in neural networks. In Proc. 6th Int. Conference on Learning
Representations (ICLR) (ICLR, 2018).

 33. Kumar, A., Sarawagi, S. & Jain, U. Trainable calibration measures for neural
networks from kernel mean embeddings. In Int. Conference on Machine
Learning 2810–2819 (MLR, 2018).

 34. Naeini, M. P., Cooper, G. & Hauskrecht, M. Obtaining well calibrated
probabilities using Bayesian binning. In 29th AAAI Conference on Artificial
Intelligence 2901–2907 (AAAI, 2015).

 35. Kiureghian, A. D. & Ditlevsen, O. Aleatory or epistemic? Does it matter?
Struct, Saf. 31, 105–112 (2009).

 36. Kendall, A. & Gal, Y. What uncertainties do we need in bayesian deep
learning for computer vision? In Advances in Neural Information Processing
Systems 30 (NIPS 2017) 5574–5584 (MIT Press, 2017).

 37. Shalev, G., Adi, Y. & Keshet, J. Out-of-distribution detection using multiple
semantic label representations. In Advances in Neural Information Processing
Systems 31 (NIPS 2018) 7375–7385 (MIT Press, 2018).

 38. Lee, K., Lee, K., Lee, K. and Shin, J. Training confidence-calibrated
classifiers for detecting out-of-distribution samples. In Proc. 6th Int.
Conference on Learning Representations (ICLR) (ICLR, 2018).

 39. Hendrycks, D. & Gimpel, K. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. In Proc. 5th Int.
Conference on Learning Representations (ICLR) (ICLR, 2017).

 40. Brock, A., Donahue, J. & Simonyan, K. Large scale GAN training for high
fidelity natural image synthesis. In Proc. 7th International Conference on
Learning Representations (ICLR) (ICLR, 2019).

 41. Devlin, J. et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies 4171–4186 (MIT Press, 2019).

 42. Sandler, M. et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition,
4510–4520 (IEEE, 2018).

 43. Chen, Y.-H., Emer, J. Sze, V. Eyeriss: a spatial architecture for
energy-efficient dataflow for convolutional neural networks. In Proc. 43rd
International Symposium on Computer Architecture, 367–379 (IEEE, 2016).

 44. Gao, M., Ayers, G. & Kozyrakis, C. Practical near-data processing for
in-memory analytics frameworks. In 2015 International Conference on
Parallel Architecture and Compilation (PACT) 113–124 (IEEE, 2015).

 45. Xue, C.-X. et al. 24.1 a 1Mb multibit ReRAM computing-in-memory macro
with 14.6 ns parallel MAC computing time for CNN based AI edge
processors. In 2019 IEEE International Solid-State Circuits Conference
(ISSCC) 388–390 (IEEE, 2019).

 46. Jiang, W., Xie, B. & Liu, C. et al. Integrating memristors and CMOS for
better AI. Nat. Electron. 2, 376–377 (2019).

 47. Huang, G., Liu, Z., Maaten, L.V.D. & Weinberger, K.Q. Densely connected
convolutional networks. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition 4700–4708 (IEEE, 2017).

 48. Zagoruyko, S. & Komodakis, N. Wide residual networks. In Proc. British
Machine Vision Conference (BMVC) 87.1–87.12 (BMVA, 2016).

 49. Ni, K. et al. Fundamental understanding and control of device-to-device
variation in deeply scaled ferroelectric FETs. In Proc. 2019 Symposium on
VLSI Technology 40–41 (IEEE, 2019).

 50. Jerry, M. et al. Ferroelectric FET analog synapse for acceleration of deep
neural network training. In Proc. 2017 IEEE International Electron Devices
Meeting (IEDM) 6.2.1–6.2.4 (IEEE, 2017).

 51. Zhao, M. et al. Investigation of statistical retention of filamentary analog
RRAM for neuromophic computing. In Proc. 2017 IEEE International
Electron Devices Meeting (IEDM) 39.4.1–39.4.4 (IEEE, 2017).

 52. Chou, T., Tang, W., Botimer, J. & Zhang, Z. CASCADE: Connecting
RRAMs to Extend Analog Dataflow In An End-To-End In-Memory
Processing Paradigm. In Proc. 52nd Annual IEEE/ACM International
Symposium on Microarchitecture 114–125 (IEEE, 2019).

 53. MacKay, D. J. A practical Bayesian framework for backpropagation
networks. Neural Comput. 4, 448–472 (1992).

 54. Neal, R. M. Bayesian Learning for Neural Networks 118 (Springer, 2012).
 55. Blundell, C., Cornebise, J., Kavukcuoglu, K. & Wierstra, D. Weight

uncertainty in neural network. In Proc. International Conference on Machine
Learning 1613–1622 (ACM, 2015).

 56. Graves, A. Practical variational inference for neural networks. In Advances
in Neural Information Processing Systems 24 (NIPS 2011) 2348–2356 (MIT
Press, 2011).

 57. Louizos C. & Welling, M. Multiplicative normalizing flows for variational
Bayesian neural networks. In Proc. 34th International Conference on
Machine Learning https://doi.org/10.5555/3305890.3305910 (ACM, 2017).

 58. Nair, T., Precup, D., Arnold, D. L. & Arbel, T. Exploring uncertainty
measures in deep networks for multiple sclerosis lesion detection and
segmentation. In Proc. Int. Conference on Medical Image Computing and
Computer-Assisted Intervention 655–663 (Springer, 2018).

 59. Ovadia, Y. et al. Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift. In Advances in Neural Information
Processing Systems 32 (NIPS 2019) 13991–14002 (MIT Press, 2019).

 60. Dhamija, A. R., Günther, M. & Boult, T. Reducing network agnostophobia.
In Advances in Neural Information Processing Systems 31 (NIPS 2018)
9175–9186 (MIT Press, 2018).

 61. Hein, M., Andriushchenko, M. & Bitterwolf, J. Why ReLU networks yield
high-confidence predictions far away from the training data and how to
mitigate the problem. In Proc. Conference on Computer Vision and Pattern
Recognition (CVPR) 41–50 (IEEE, 2018).

 62. Alexandari, A., Kundaje, A. & Shrikumar, A. Maximum likelihood with
bias-corrected calibration is hard-to-beat at label shift adaptation. Preprint
at https://arxiv.org/abs/1901.06852 (2019).

 63. Chen, T., Navrátil, J., Iyengar, V. & Shanmugam, K. Confidence scoring
using whitebox meta-models with linear classifier probes. In Proc. 22nd
International Conference on Artificial Intelligence and Statistics 1467–1475
(PMLR, 2019).

 64. Mandelbaum, A. & Weinshall, D. Distance-based confidence score for neural
network classifiers. Preprint at https://arxiv.org/abs/1709.09844 (2017).

 65. Oberdiek, P., Rottmann, M. & Gottschalk, H. Classification uncertainty of
deep neural networks based on gradient information. In IAPR Workshop on
Artificial Neural Networks in Pattern Recognition 113–125 (Springer, 2018).

 66. Teerapittayanon, S., McDanel, B. & Kung, H.-T. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd Int. Conference
on Pattern Recognition (ICPR) 2464–2469 (Springer, 2016).

 67. Wang, X. et al. Idk cascades: fast deep learning by learning not to
overthink. In Proc. Conference on Uncertainty in Artificial Intelligence
580–590 (UAIA, 2018).

 68. Sze, V., Chen, Y.-H., Yang, T.-J. & Emer, J. S. Efficient processing of deep
neural networks: a tutorial and survey. Proc. IEEE 105, 2295–2329 (2017).

 69. Geifman, Y. & El-Yaniv, R. Selectivenet: a deep neural network with an
integrated reject option. In Proc. Int. Conference on Machine Learning
2151–2159 (MLR, 2019).

 70. Song, C., Liu, B., Wen, W., Li, H. & Chen, Y. A quantization-aware
regularized learning method in multilevel memristor-based neuromorphic
computing system. In 2017 IEEE 6th Non-Volatile Memory Systems and
Applications Symposium (NVMSA) https://doi.org/10.1109/
NVMSA.2017.8064465 (IEEE, 2017).

 71. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proc. IEEE conference on Computer Vision and Pattern
Recognition 770–778 (IEEE, 2016).

 72. Gaier, A. & Ha, D. Weight agnostic neural networks. In Advances in Neural
Information Processing Systems 32 (NIPS 2019) 5364–5378 (MIT Press, 2019).

 73. Nguyen-Phuoc, T., Li, C., Theis, L. Richardt, C. & Yang, Y.-L. Hologan:
Unsupervised learning of 3D representations from natural images. In Proc.
IEEE Int. Conference on Computer Vision 7588–7597 (IEEE, 2019).

 74. Nalisnick, E. et al. Hybrid models with deep and invertible features. In Proc.
Int. Conference on Machine Learning 4723–4732 (MLR, 2019).

 75. Wu, C.-J. et al. Machine learning at Facebook: understanding inference at
the edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA) 331–344 (IEEE, 2019).

 76. Gupta, U. et al. The architectural implications of Facebook’s DNN-based
personalized recommendation. In 2020 IEEE Int. Symposium on High
Performance Computer Architecture (HPCA) 488–501 (IEEE, 2020).

 77. Krizhevsky, A., Sutskever, I. & Hinton, G.E. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25 (NIPS 2012) 1097–1105 (MIT Press, 2012).

 78. Zoph, B. & Le, Q.V. Neural architecture search with reinforcement learning.
In Proc. 5th Int. Conference on Learning Representations (ICLR) (ICLR, 2017).

 79. Tan, M. et al. Mnasnet: Platform-aware neural architecture search for
mobile. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition 2820–2828 (IEEE, 2019).

 80. Yang, L. et al. Co-exploring neural architecture and network-on-chip design
for real-time artificial intelligence. In Proc. Asia and South Pacific Design
Automation Conference (ASP-DAC) 85–90 (2020).

Nature eLectroNicS | www.nature.com/natureelectronics

https://doi.org/10.5555/3305890.3305910
https://arxiv.org/abs/1901.06852
https://arxiv.org/abs/1709.09844
https://doi.org/10.1109/NVMSA.2017.8064465
https://doi.org/10.1109/NVMSA.2017.8064465
http://www.nature.com/natureelectronics

PersPective NaTure elecTroNics

 81. Liu, H., Simonyan, K. & Yang, Y. DARTS: Differentiable architecture
search. In Proc. 7th Int. Conference on Learning Representations (ICLR)
(ICLR, 2019).

 82. Hendrycks, D. & Dietterich, T. Benchmarking neural network robustness to
common corruptions and perturbations. In Proc. 7th Int. Conference on
Learning Representations (ICLR) (ICLR, 2019).

 83. Huang, X., Kwiatkowska, M., Wang, S. & Wu, M. Safety verification of deep
neural networks. In Proc. Int. Conference on Computer Aided Verification
3–29 (Springer, 2017).

 84. Papernot, N. et al. Practical black-box attacks against machine learning. In
Proc. 2017 ACM Asia Conference on Computer and Communications
Security 506–519 (ACM, 2017).

 85. Abadi, M. et al. Deep learning with differential privacy. In Proc. 2016 ACM
SIGSAC Conference on Computer and Communications Security 308–318
(ACM, 2016).

 86. Papernot, N. et al. Practical black-box attacks against machine learning. In
Proc. 2017 ACM Asia Conference on Computer and Communications security
506–519 (ACM, 2017).

 87. Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation:
representing model uncertainty in deep learning. In Proc Int. Conference on
Machine Learning 1050–1059 (MLR, 2016).

 88. Liu, S. et al. Cambricon: An instruction set architecture for neural
networks. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA) 393–405 (IEEE, 2016).

 89. Chen, Y.-H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE J.
Solid-State Circ. 52, 127–138 (2016).

 90. Chen, T. et al. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. ACM SIGARCH Comput. Archit. News 42,
269–284 (ACM, 2014).

 91. Chen, Y. et al. Dadiannao: A machine-learning supercomputer. In 2014
47th Annual IEEE/ACM Int. Symposium on Microarchitecture 609–622
(IEEE, 2014).

 92. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor
processing unit. In Proc. 44th Annual Int. Symposium on Computer
Architecture https://doi.org/10.1145/3140659.3080246 (ACM, 2017).

 93. Han, S. et al. EIE: efficient inference engine on compressed deep neural
network. ACM SIGARCH Comput. Archit. News 44, 243–254 (2016).

 94. Farabet, C. et al. Neuflow: A runtime reconfigurable dataflow processor for
vision. In CVPR2011 Workshops 109–116 (IEEE, 2011).

 95. Yoo, H.-J. et al. A 1.93 tops/w scalable deep learning/inference processor
with tetra-parallel MIMD architecture for big data applications. In IEEE Int.
Solid-State Circuits Conference 80–81 (IEEE, 2015).

 96. Du, Z. et al. ShiDianNao: Shifting vision processing closer to the sensor. In
Proc. 42nd Annual International Symposium on Computer Architecture
92–104 (IEEE, 2015).

 97. Moons, B. & Verhelst, M. A 0.3–2.6 TOPS/W precision-scalable processor
for real-time large-scale ConvNets. In Proc. 2016 IEEE Symposium on VLSI
Circuits (VLSI-Circuits) https://doi.org/10.1109/VLSIC.2016.7573525
(IEEE, 2016).

 98. Whatmough, P. N. et al. 14.3 A 28nm SoC with a 1.2 GHz 568nJ/prediction
sparse deep-neural-network engine with >0.1 timing error rate tolerance
for IoT applications. In Proc. 2017 IEEE Int. Solid-State Circuits Conference
(ISSCC) 242–243 (IEEE, 2017).

 99. Zhou, X. et al. Cambricon-s: Addressing irregularity in sparse neural
networks through a cooperative software/hardware approach. In Proc. 2018
51st Annual IEEE/ACM Int. Symposium on Microarchitecture (MICRO)
15–28 (IEEE, 2018).

 100. Song, J. et al. 7.1 An 11.5 TOPS/W 1024-MAC butterfly structure dual-core
sparsity-aware neural processing unit in 8nm flagship mobile SoC. In 2019
IEEE Int. Solid-State Circuits Conference-(ISSCC) 130–132 (IEEE, 2019).

 101. Desoli, G. et al. 14.1 a 2.9 TOPS/W deep convolutional neural network
SOC in FD-SOI 28nm for intelligent embedded systems. In 2017 IEEE Int.
Solid-State Circuits Conference (ISSCC) 238–239 (IEEE, 2017).

 102. Lee, J. et al. UNPU: A 50.6 TOPS/W unified deep neural network
accelerator with 1b-to-16b fully-variable weight bit-precision. In 2018 IEEE
Int. Solid-State Circuits Conference-(ISSCC) 218-220 (IEEE, 2018).

 103. Park, E., Kim, D. & Yoo, S. Energy-efficient neural network accelerator based
on outlier-aware low-precision computation. In 2018 ACM/IEEE 45th Annual
Int. Symposium on Computer Architecture (ISCA) 688–698 (IEEE, 2018).

 104. Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M. & Moshovos, A.
Stripes: Bit-serial deep neural network computing. In 2016 49th Annual
IEEE/ACM Int. Symposium on Microarchitecture (MICRO) https://doi.
org/10.1109/MICRO.2016.7783722. (IEEE, 2016).

 105. Sharma, H. et al. Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network. In 2018 ACM/IEEE 45th Annual Int.
Symposium on Computer Architecture (ISCA) 764–775 (IEEE, 2018).

 106. Aimar, A. et al. Nullhop: A flexible convolutional neural network
accelerator based on sparse representations of feature maps. IEEE Trans.
Neural Netw. Learn. Syst. 30, 644–656 (2018).

 107. Parashar, A. et al. Scnn: An accelerator for compressed-sparse convolutional
neural networks. ACM SIGARCH Comput. Archit. News 45, 27–40 (2017).

 108. Moloney, D. et al. Myriad 2: Eye of the computational vision storm. In 2014
IEEE Hot Chips 26 Symposium (HCS) https://doi.org/10.1109/
HOTCHIPS.2014.7478823 (IEEE, 2014).

 109. Intel Agilex FPGAs and SOCs (Intel, 2020); https://www.intel.com/content/
www/us/en/products/programmable/fpga/agilex.html

 110. List of Graphics Processing Units (Wikipedia, 2020); https://en.wikipedia.org/
wiki/List_of_Nvidia_graphics_processing_units

 111. Kumbhare, P. et al. A selectorless RRAM with record memory window and
nonlinearity based on trap filled limit mechanism. In 2015 15th
Non-Volatile Memory Technology Symposium (NVMTS) https://doi.
org/10.1109/NVMTS.2015.7457491 (IEEE, 2015).

 112. Larcher, L. et al. A compact model of program window in HfO x RRAM
devices for conductive filament characteristics analysis. IEEE Trans. Electron
Dev. 61, 2668–2673 (2014).

 113. Lee, S. et al. Engineering oxygen vacancy of tunnel barrier and switching
layer for both selectivity and reliability of selector-less ReRAM. IEEE
Electron Dev. Lett. 35, 1022–1024 (2014).

 114. Lee, S. et al. Selector-less ReRAM with an excellent non-linearity and
reliability by the band-gap engineered multi-layer titanium oxide and
triangular shaped AC pulse. In 2013 IEEE Int. Electron Devices Meeting
10.6.1-10.6.4 (IEEE, 2013).

 115. Woo, J. et al. Selector-less RRAM with non-linearity of device for
cross-point array applications. Microelectron. Eng. 109, 360–363 (2013).

 116. Lee, S. et al. Effect of AC pulse overshoot on nonlinearity and reliability of
selectorless resistive random access memory in AC pulse operation.
Solid-State Electron. 104, 70–74 (2015).

 117. Dongale, T. D. et al. Effect of write voltage and frequency on the reliability
aspects of memristor-based RRAM. Int. Nano Lett. 7, 209–216 (2017).

 118. Gismatulin, A., Volodin, V., Gritsenko, V. & Chin, A. All nonmetal resistive
random access memory. Sci. Rep. 9, 6144 (2019).

 119. Grossi, A. et al. Experimental investigation of 4-kb RRAM arrays
programming conditions suitable for TCAM. IEEE Trans. VLSI Syst. 26,
2599–2607 (2018).

 120. Mulaosmanovic, H. et al. Evidence of single domain switching in hafnium
oxide based FeFETs: Enabler for multi-level FeFET memory cells. In Proc.
2015 IEEE Int. Electron Devices Meeting (IEDM) 26.8.1–26.8.3 (IEEE, 2015).

 121. Ni, K., Li, X, Smith, J. A., Jerry, M. & Datta, S. Write disturb in ferroelectric
FETs and its implication for 1T-FeFET AND memory arrays. IEEE Electron
Device Lett. 39, 1656–1659 (2018)

 122. Zhang, Z., Dalca, A. V. & Sabuncu, M. R. Confidence calibration for
convolutional neural networks using structured dropout. Preprint at https://
arxiv.org/abs/1906.09551 (2019).

 123. Atanov, A., Ashukha, A., Molchanov, D., Neklyudov, K. & Vetrov, D.
Uncertainty estimation via stochastic batch normalization. In Proc. Int.
Symposium on Neural Networks 261–269 (Springer, 2019).

 124. Liu, Z. et al. Deep gamblers: learning to abstain with portfolio theory. In
Advances in Neural Information Processing Systems 32 (NIPS 2019)
10622–10632 (MIT Press, 2019).

 125. Qiu, X., Meyerson, E. & Miikkulainen, R. Quantifying point-prediction
uncertainty in neural networks via residual estimation with an I/O
kernel. In Proc. 8th Int. Conference on Learning Representations (ICLR)
(ICLR, 2020).

author contributions
Y.D. contributed to all aspects of the project. X.X., and W.J. contributed to data collection
and discussion. J.L., Q.L., J.X., and X.H. contributed to discussion and writing. Y.S.
contributed to project planning, development, discussion, and writing.

competing interests
The authors declare no competing interests.

additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41928-020-00476-7.

Correspondence should be addressed to X.X. or Y.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© Springer Nature Limited 2020

Nature eLectroNicS | www.nature.com/natureelectronics

https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1109/VLSIC.2016.7573525
https://doi.org/10.1109/MICRO.2016.7783722.
https://doi.org/10.1109/MICRO.2016.7783722.
https://doi.org/10.1109/HOTCHIPS.2014.7478823
https://doi.org/10.1109/HOTCHIPS.2014.7478823
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://doi.org/10.1109/NVMTS.2015.7457491
https://doi.org/10.1109/NVMTS.2015.7457491
https://arxiv.org/abs/1906.09551
https://arxiv.org/abs/1906.09551
https://doi.org/10.1038/s41928-020-00476-7
https://doi.org/10.1038/s41928-020-00476-7
http://www.nature.com/reprints
http://www.nature.com/natureelectronics

	Hardware design and the competency awareness of a neural network
	Uncertainty estimation for competency awareness
	Selective prediction.
	Confidence calibration.
	Other use cases.

	Potential impact of hardware developments
	Impact of memory size.
	Impact of in-memory computing based on emerging devices.

	Challenges of uncertainty estimation on hardware designs
	Hardware challenges.
	Multi-objective optimization.

	Future directions
	Hardware.
	Software.
	Hardware–software co-design.

	Conclusions
	Fig. 1 Competency awareness of neural networks.
	Fig. 2 Trends in memory capacity and memory window.
	Fig. 3 Uncertainty-related performance with respect to memory footprint, quantization and device-to-device variation.
	Fig. 4 Timeline of developments in uncertainty estimation methods.

