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Abstract—It is predicted that fifty billion sensor-based devices
are to be connected to the Internet by 2020 with the fast devel-
opment of Internet of Things (IoT). Stream data mining on these
tremendous sensor-based devices has become an urgent task.
Dynamic time warping (DTW) is a popular similarity measure,
which is the foundation of stream data mining. In the last decade,
DTW has been well accelerated with software and reconfigurable
hardware optimizations. However, energy-efficiency has not been
considered, which is critical for data mining on these devices.
In this paper, we propose an energy-efficient DTW acceleration
architecture for stream data mining on sensor-based devices,
which is based on a hybrid embedded platform of ARM and
field programmable gate array (FPGA). Software optimizations
for DTW are implemented on ARM, and pipelined DTW is
implemented on FPGA for further accelerations. A pilot study
is performed with three widely adopted stream data mining
tasks: similarity search, classification, and anomaly detection.
The results show that the performance improvements vary for
different configurations, and the achieved average speedup and
energy efficiency improvement are 7.52x and 4.23x, respectively.

I. INTRODUCTION

With the popularity of Internet of Things (IoT), more
and more embedded devices are connected to IoT. The Cisco
Internet Business Solutions Group (IBSG) predicts that 50
billion devices will be connected to the Internet by 2020 [1],
most of which are sensor-based embedded devices. Thus, a
huge number of stream data will be produced by them. As
many applications require real-time data mining such as speech
recognition [2], activity recognition [3], it is an urgent task to
perform stream data mining on sensor-based devices, where
the constraints of computation capacity and energy capacity
should be considered.

Distance measure between time series plays an important
role in stream data mining, which is the foundation of higher
data mining tasks, such as classifications and clusterings.
Dynamic time warping (DTW) is one of the best distance
measures according to a recent comparison study of several
distance measures with 44 datasets [4]. It is widely applied to
different fields, such as speech recognition, financial analysis
and network traffic monitoring [5]. However, DTW has a
quadratic time complexity, which is computation-expensive for
huge data processing on sensor-based devices.

DTW has been well optimized with software and hardware
methods to solve the obstacle of computation complexity. Low-
er bound [6] [7] is a powerful optimization method, which can
prune a lot of sequences in many tasks such as similarity search
and classification. Early abandon [8] is also very effective.

Rakthanmanon et al. [8] cascaded multiple stages of software
optimizations, which is considered as the most powerful imple-
mentation for similarity search to date. DTW in a streaming
manner is proposed by sakurai et al. [9], which achieves a
linear time complexity, however, allows false dismissals. The
majority of these techniques achieve speedup by reducing the
invoking times of DTW rather than accelerating DTW itself.
However, the DTW calculation still accounts for about 80%
of the total executing time [10] [11]. Therefore, reconfigurable
hardware is adopted for further acceleration. Wang et al. [11]
implemented a high-throughput DTW framework for similarity
search on FPGAs. The proposed structure of processing ele-
ment (PE) ring exploits the fine-grained parallelism of DTW
and achieves significant speedup. Hardware acceleration of
DTW has also been implemented on graphic processing units
(GPU) [12] [13].

In IoT, a typical device runs on a system-on-a-chip (SoC)
system for high performance and energy efficiency [14]. The
reconfigurable hardware part of the SoC system handles the
critical functions (or bottlenecks). The software part (e.g.,
central processing unit (CPU)) of SoC is responsible for
software optimizations, task scheduling and data management.
Usually, hardware/software partitioning is preferred on SoC for
energy efficiency. Recently, Tarango et al. [14] proposed an
implementation of DTW based on instruction set extensions for
similarity search task. Critical codes in software are replaced
with extended instructions customized on FPGAs. However,
the processing flow of DTW is not optimized, and it does
not utilize the potential parallelism of DTW. Furthermore, the
energy-efficiency and performance of the used softcore are
relatively low if not well optimized compared with hardcore.

In this paper, we propose a general and pipelined DTW
acceleration architecture based on ARM+FPGA for stream
data mining on sensor-based devices.We utilize the potential
parallelism of DTW, and implement a parameterized and
pipelined DTW accelerator on the reconfigurable hardware.
Software optimizations of DTW for different tasks are imple-
mented on hardcore ARM, and the DTW accelerator serves
as a sub-function. With collaboration of software and hard-
ware optimizations, the performance of the system has the
potential to get significant improvements. We conduct a series
of experiments with three widely adopted stream data mining
tasks, similarity search, classification, and anomaly detection.
Public-available datasets are also adopted. Compared with
implementations on ARM, the speedup and energy reduction
vary for different tasks. The average speedup and energy
efficiency improvement are 7.52x and 4.23x, respectively.978-1-5090-0172-9/15/$31.00 c© 2015 IEEE
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II. BACKGROUND

A. Time Series and Subsequences

A time series S is a sequence of data measures, which
is represented typically with uniform time intervals shown as
below:

S = (t1, s1), (t2, s2), ..., (ti, si), ..., (tn, sn). (1)

For convenience, S is usually simplified as follows:

S = s1, s2, ..., si, ..., sn. (2)

As a time series is usually very long, segmentation is used to
divide the long sequence into short subsequences for conve-
nient processing. Thus, one subsequence of S can be rewritten
as follows:

Sk = si, si+1, ..., si+k−1, (3)

where k is the length of the subsequences. For convenient
discussion, subsequences are also expressed as sequences.

B. Dynamic Time Warping with Constraints

DTW is a robust distance measure for time series se-
quences. Suppose there are two time sequences as shown in
Fig.1(a), a sequence C of length n as a candidate, and a
sequence T of length m as a training template, where

C = c1, c2, ..., ci, ..., cn, T = t1, t2, ..., ti, ..., tm. (4)

Usually normalization and representation are applied to prepro-
cess the sequences. Time series sequences must be normalized
to make a meaningful comparisons [8]. Z-normalization is
adapted in this work to remove offsettings and amplitudes as
shown below:

µT =
1

m

m∑
k=1

tk, σ
2
T =

1

m

m∑
k=1

t2k − µ2
T , t

′
k =

tk − µT

σT
. (5)

To measure the similarity of these two time sequences, DTW
creates a n-by-m matrix, MT . The value of the (ith, jth)
element in MT represents the distance, d(c′′i , t

′′
j ), between

points ci and tj as

MT (i, j) = d(c′′i , t
′′
j ), (6)

which is called distance matrix calculation as shown in
Fig.1(b). There are many effective distance metric such as
Manhattan distance, Euclidean distance, for distance matrix
calculation. We choose the widely-used Manhattan distance
as shown below:

d(c′′i , t
′′
j ) = |c′′i − t′′j |. (7)

With the distance matrix, the warping path can be derived.
There are three well-known constrains for the warping path in
DTW: boundary conditions, continuity condition and monoton-
ic condition. boundary conditions means that the first/last point
of C must correspond to the first/last point of T . continuity
condition means that each element of the warping path in
the matrix, MT , must have two elements of the warping
path around it except the first and the last points. monotonic
condition requires that the extending direction of the warping

(a) (b) (c)

Fig. 1. (a) DTW matching: T and C are two sequences, and the lines
indicate the matching relationship; (b) DTW warping path with Sakoe-Chiba
band R = 40%: the gray squares form the warping path between T and C on
the distance matrix, and the area between two bold lines are available areas
assigned by DTW constraints; (c) kNN Rule: X is classified by a majority
vote of k neighbors. The star in the center is classified as triangle when k = 3,
while if k = 7, the star is classified as square.

path is right, or top or top-right. The shortest warping path
through the matrix is derived, using [15]:

CD(i, j) =MT (i, j) +min

{
CD(i, j − 1)
CD(i− 1, j) ,
CD(i− 1, j − 1)

CD(0, 0) = 0, CD(0, j) = CD(i, 0) =∞,
1≤i≤n; 1≤j≤m,

(8)

where CD(i, j) is the current minimum cumulative distance
for MT (i, j). This procedure is called warping path calcu-
lation. After that, the minimized cumulative distance can be
derived. Finally, the DTW distance is calculated as shown
below:

dtw =
√
CD(n,m). (9)

Usually the calculation combination of distance matrix cal-
culation and warping path calculation are regarded as DTW
matrix calculation. The time complexity of DTW is O(n2).

The Sakoe-Chiba [16] band is used as DTW constraint as
shown in Fig.1(b). DTW constraint, R, can reduce the available
DTW path thus achieves speedup. R is defined as the rate of
the warping length over the whole sequence, and it varies from
0 to 100%. It can also avoid some unpractical matchings, e.g.,
the matching of the first point of one sequence to the last
point in another sequence can be eliminated. DTW constraint
is effective for many applications, and the choice of R depends
on specific applications and configurations.

For the simplicity of the presentation, other optimization
methods (e.g., lower bounds, early abandon and reordering)
are not presented here. Readers can refer to [8] for details.

C. k-Nearest Neighbors

The k Nearest Neighbors (kNN) algorithm is one of the
well-investigated methods for pattern classification, which is
used to determine the class of an unclassified point by the
class of the k nearest points of it [17]. k varies for different
applications. An example of how kNN works is shown in
Fig.1(c). kNN can also be applied to anomaly detections [18].

III. DTW ACCELERATION ARCHITECTURE

In this section, an overview of the proposed DTW accel-
eration architecture is presented, emphasizing on the DTW
interface and DTW-FPGA modules. The features of DTW
interface are also analysed and discussed in detail.
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Fig. 3. Work flow of the proposed DTW acceleration architecture.

Fig. 2. Hardware structure of the proposed DTW acceleration architecture.

Fig. 4. Data format of DTW interface: check bits, ’10’ at the head of the
frame, and ’01’ at the tail of the frame; ID, ID of the current sequence in
ascending order; sequence types, the type of the sequence; DTW Constrains,
the warping constraint radius (%); sequence length, the length of current
sequence; sequence point, one point in current sequence; reserved bits, for
further optimizations; DTW result, the DTW result of the sequence with its
ID.

A. Overview

The structure of the proposed DTW acceleration archi-
tecture is shown in Fig. 2, which is based on a general
SoC platform, Cyclone V SoC by Altera [19]. There are
three components of the DTW acceleration architecture: ARM,
DTW interface and DTW-FPGA.

The workflow and functionality of these three components
are shown in Fig. 3. ARM is mainly responsible for imple-
mentation of software optimizations. The software optimiza-
tion methods for DTW including lower bound [4] [6] [7]
and early abandon [8] are implemented. Once DTW need
to be calculated, the input data for DTW is sent to DTW

interface. With some processing time (much faster than the
software calculation), DTW interface returns the DTW result.
If multiple tasks (e.g., classification, anomaly detection and
similarity search) are implemented, transaction management
is also handled by ARM. DTW-FPGA is a parameterized
DTW implementation on FPGAs. It receives DTW input data,
calculates DTW and returns the result to DTW interface.
DTW interface is responsible to handle data and control
transformation between ARM and DTW-FPGA. It is connected
to ARM with a high-bandwidth interconnect backbone. DTW
interface serves as a general-purpose memory accessible from
DTW-FPGA through a high-speed bus.

B. Parameterized DTW Interface

DTW interface is implemented with a dual-port FPGA
memory block, which is compiled with Golden System Ref-
erence Design (GSRD) and added to the device tree of ARM
[20]. DTW interface has two regions, DTW input region and
DTW output region, which can be accessed by ARM and
DTW-FPGA. The DTW input region stores the sequences that
need to be calculated, while the output region caches the DTW
results. When there is DTW calculations, the task on ARM first
sends the template sequences, and then sends the packaged
time series sequence to the DTW input region. When the
transmission is completed, the task will repeatedly read the
data in the DTW output region of DTW interface, and the
DTW-FPGA will process DTW calculation once it detects the
correct format in the DTW input region. When the calculation
is fulfilled, DTW-FPGA writes the result to the DTW output
region. Then, the task detects the correct format in the DTW
output region. Here, one DTW calculation is completed.

The parameterizations of DTW interface is achieved with
configurable parameters, which can be set on the fly. The data
format of the two regions is illustrated in Fig. 4. As there
are many sequences for DTW calculation, ID is introduced
to distinguish different sequences. The DTW interface sup-
ports a variety of parameters including sequence length and
DTW constraint. With Sequence Type and ID in the DTW
input region, the number of template sequences can also be
supported. Burst transmission is supported by DTW interface
to increase throughput. As the throughput of DTW-FPGA is
relatively high, burst transmission can decrease the processing
time in DTW interface. As shown in Fig. 4, the size of the
DTW input/output region is designed to be much larger than
the size of one input/output data in order to support burst
receiving. The task can send n sequences to the DTW input
region for calculation. Rather than detect the data format of the
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Fig. 5. Architecture of DTW-FPGA module (L: length of sequences; W :
the number of training templates in DTW module; R: DTW constraint).

first output data address, the task will check the nth output data
address. Once the data format of the nth output data address
is correct, all the n DTW calculations are fulfilled, and the
task can read all the n DTW results in a burst manner. The
detailed discussion of the characterization of DTW interface
is presented in Subsection III-D.

C. Pipelined DTW-FPGA

DTW-FPGA processes the pipelined DTW calculation and
sends results to DTW interface. As shown in Fig. 5, N
Processing Elements (PE) and one first in first out (FIFO)
module are linked with each other like a ring, which is a
modification of the work presented in [11]. Unlike the work
in [11], the streaming DTW [9] is not adopted in order to
guarantee accuracy. The training template RAM stores training
templates. The candidate controller and training template con-
troller receive configuration parameters from DTW interface.
These parameters include length of sequences, the number
of training templates in DTW module and DTW constraint.
The two controllers achieve parameterizations by controlling
when to send candidates and templates to which PE. The
function of PE is to calculate one column of the DTW matrix.
With the feature of DTW matrix calculation, the left, left-
bottom and bottom elements in DTW matrix are required
for the processing of PEs, which are easily achieved with
connections between PEs. When the candidate length is larger
than the number of PE, the FIFO besides the PE1 is used
to store temporary results of PEN to support large candidate
length, otherwise stores boundary conditions for PE1. The
result controller is responsible for selecting the right result
and send it to the output port.

Fig. 6 shows the work flow of DTW-FPGA module. The
PE number is three, and the sequence length of candidates and
queries are also three. The dimension of the data streams is
one. The query sequence is Q = {3, 2, 4}, and there are two
candidate sequences: C1 = {1, 4, 3} and C2 = {1, 3, 1}. At
the first cycle, the first tuple of C1 is sent to PE1 and the [1,1]
cell of DTW matrix between C1 and Q is calculated. In the
second cycle, the second tuple C1(2) = 4 is sent to PE2, and
cell [1, 2] and [2,1] are calculated at the same time. At the
3th cycle, the third tuple C1(3) = 3 is sent to PE3, and cell
[1, 3], [2, 2] and [3, 1] are calculated. At the 4th cycle, PE1

Fig. 6. An illustration of DTW-FPGA workflow: Two 3*3 matrix are the
DTW matrixes between query Q and candidates C1 and C2. (a) is a one
dimensional tuple of candidates and queries. In [b, c], b is the accumulated
DTW distance and c is the cycle time. The item below [b, c] indicates which
PE processes the matrix cell it locates.

has finished the calculation of the first column, and the first
tuple of C2 is sent to PE1. At the 5th cycle, the calculation
of DTW matrix between C1 and Q is completed. The result
controller handles the result from PE3 to the output port. The
iteration processing continues. The number of cycles needed
to pump one DTW distance is the length of the candidates.

D. Characterization of DTW Interface

The sequence length, N , and the burst transmission num-
ber, M , are analysed to discuss characterizations of the param-
eterized DTW interface in this subsection. Other parameters
are also discussed. For the discussion, a task is implemented on
ARM to calculate DTW for 512 times with different M and L.
As the processing time of DTW interface and DTW calculation
is independent of data, the test data is produced randomly.
Let the time of sending a sequence be TIO, and the time of
calculate DTW distance be TDTW . The average execution time
of one DTW calculation is represented as Taverage.

Fig. 7(a) and Fig. 7(b) show that Taverage varies with
different L and M . In Fig. 7(a), Taverage is almost linear to L
when M is larger than 16. For M smaller than 16, Taverage has
a jump, whose range is nearly inverse proportional to M . In
Fig. 7(b), when L is small (e.g., L ≤ 200), Taverage decreases
with the increasing M . However when M reaches some value,
Taverage becomes constant. When L is relative large (e.g.,
L ≥ 400), Taverage is constant.

A mathematic model is adopted to further analyze these
phenomena. It should be noted that time complexities of TIO
and TDTW are both linear. TIO is linear to L, and TDTW is
proportional to M and L. The mathematic model is shown
below:

Taverage =

{
TIO + TDTW

M , TIO > TDTW
TIO

M + TDTW , TIO ≤ TDTW .
(10)

Fig. 8 shows an illustration of the two situations of
the mathematic model. When TIO > TDTW , Taverage =
TIO + TDTW /M . With the increase of M , Taverage grad-
ually decreases, and finally approaches to the TIO; when
TIO < TDTW , Taverage = TIO/M+TDTW . With the increase
of M , Taverage gradually decreases, and finally approaches
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(a) (b)

Fig. 7. Characterizations of DTW interface: (a) Taverage varies with
continuous burst transmission number, L, and discrete sequence length, M
and (b) Taverage varies with continuous burst transmission number, L, and
discrete sequence length, M .

(a) (b)

Fig. 8. An illustration of two situations for Taverage: (a) TIO >
TDTW , TTotal = M × TIO + TDTW ; (b) TIO > TDTW , TTotal =
TIO +M × TDTW .

to TDTW . When TIO << TDTW , TIO/M can be ignored,
therefore Taverage ≈ TDTW .

When M and L are both small, TDTW is analogous to
TIO. Thus, TIO has a relatively large influence on Taverage,
which results in a jump in Fig. 7(a) and the non-constant part
in Fig. 7(b). The linearity in Fig. 7(a) and constant part in
Fig. 7(b) are all due to the fact that TIO can be ignored when
one or both of M and L are relatively large.

This principle can be also applied to analyse influences of
other parameters of DTW interface. It is easy to know that
the number of training templates, W , has the same influence
with the length of sequence, L. As DTW constraint, R, has
no impact on DTW calculation time, it does not affect the
characterization of DTW interface.

IV. EXPERIMENTS

With the proposed DTW acceleration architecture, we
conduct a comprehensive experiment with three popular tasks
in stream data mining including similarity search, classifica-
tion and anomaly detection. In the experiment, the proposed
architecture is expressed as ARM+FPGA for simplicity.

A. Experiment Overview

The datasets used for similarity search and kNN are
obtained from the UCR time series classification/clustering
page [21], which serves as a public datasets for data mining
and machine learning communities. For anomaly detection,
the datasets are from the MIT-BIH Long Term Database [22]

TABLE I. CONFIGURATIONS OF THE PROPOSED DTW ACCELERATION
ARCHITECTURE

Platform Component Parameter

PE Number 24
Data Precision 8 bits

FPGA Adaptive Logic Modules (ALM) 3,469 / 41,910 ( 8 % )
Register Number 2922
Clock Frequency 60MHz

Clock Frequency 800MHz
Programming Language C++

ARM Compiler Tool GCC 4-7-3
Optimization Level O3

DTW Constraint 5%/100%

which contains electrocardiograms (ECG) with a length of
about 20 hours for each patient.

The proposed DTW acceleration architecture is based on
Cyclone V SX SoC [19]. A relatively high clock frequency,
60MHz is achieved on the SoC with the lowest speed grade,
C8, of Altera [19]. The configurations are shown in TABLE I.

In the experiments, tasks are implemented on both ARM
and ARM+FPGA for comparison. For ARM implementations,
all tasks are coded in C++ with double precision. Compared
with ARM implementations, implementations on ARM+FPGA
move DTW calculations to DTW-FPGA. All software opti-
mizations are adopted from the UCR suite [8], which is the
state-of-art software implementation of DTW for similarity
search.

For DTW constraint configuration, two conditions, 5%
and 100% (or no DTW constraint), are discussed. It should
be noted that the best DTW constraint to get the highest
accuracy is specific for applications. As the lower bound
method proposed by Keogh et al. [23] (LBKeogh in short) is
specific for DTW with constraints, it is only used with a low
DTW constraint of 5% . The lower bound method proposed by
Kim et al. [7] (LBKim in short) is adopted for both conditions.
As M is involved with tasks and real-time requirement, M is
set to one for clear demonstration and comparison. It should
be noted that larger M can get higher performance.

Accuracy, speedup, and energy efficiency are discussed in
the experiments. Energy efficiency is associated with runtime
and power consumption as shown below:

Eefficiency =
ItemNumber

Energy
, (11)

where ItemNumber is the product of the total sequence
number and the template number, and Energy is the total com-
suming energy. A power estimation tool, PowerP lay [24], is
used to estimate the power consumption of the platform. The
power consumption of the platform is shown in TABLE II. For
ARM implementations, only the power of ARM contributes to
the total power consumption. While for ARM+FPGA, the total
power consumption is the sum of three components, ARM,
DTW interface and DTW-FPGA.

TABLE II. POWER CONSUMPTION (MW) OF THE PROPOSED DTW
ACCELRATION ARCHITECTURE

DTW Acceleration Architecture ARM DTW Interface DTW-FPGA

2508.21 1422.07 487.73 598.42
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(a) Accuracy (b) DTW constraint of 100% (c) Best DTW constraints

Fig. 9. Results of classification with kNN: (a) accuracy; (b) speedup with DTW constraint of 100%; (c) speedup with best DTW constraints. Datasets: 1-
50Words; 2-Adiac; 3-Beef; 4-CBF; 5-Coffee; 6-ECG200; 7-FaceAll; 8-FaceFour; 9-fish; 10-Gun Point; 11-Lighting2; 12-Lighting7; 13-OliveOil; 14-OSULeaf;
15-SwedishLeaf; 16-synthetic control; 17-Trace; 18-Two Patterns; 19-wafer; 20-yoga.

(a) Template number=4, DTW constraint=5% (b) Template number=40, DTW constraint=5% (c) Template number=400, DTW constraint=5%

(d) Template number=4, DTW constraint=100% (e) Template number=40, DTW constraint=100% (f) Template number=400, DTW constrain-
t=100%

Fig. 10. Accuracy of anomaly detection with different template number and DTW constraints.

B. Similarity Search
1) Experiment setup: The dataset, Two patterns [21],

with 512000 points is selected for similarity search. Similarity
search is to find the candidate, which has the minimum DTW
distance with the query from all the candidates. The query
is sent to the DTW interface and stored by DTW-FPGA at
the beginning. Then if DTW software optimizations could not
prune the current sequence, it will be sent to DTW interface
for DTW calculations.

2) Results: TABLE III shows the results of the similarity
search task. ARM+FPGA and ARM have the same accuracy
as they find the same sequence as the most similar one to the
query. For DTW constraint of 100%, the first point of the result
is located at the 329463th point, while for DTW constrain of
5%, the first point of the result is located at the 459138th point.
Compared with ARM, the speedup of ARM+FPGA are 0.96x
and 12.34x for DTW constraints of 5% and 100%, respectively,

TABLE III. RESULTS OF SIMILARITY SEARCH

Platform DTW
Constraint

Execution
Time

(second)

Speedup Energy Efficiency
(items/mJ)

Energy
Improve-

ment

ARM 5% 6.3 N/A 57.15 N/A
ARM+FPGA 5% 6.6 0.96x 30.93 0.54x
ARM 100% 514.74 N/A 0.70 N/A

ARM+FPGA 100% 41.71 12.34x 4.89 6.98x

and the energy efficiency improvement are 0.54x and 6.98x for
DTW constraints of 5% and 100%, respectively. There is a big
difference between speedups with DTW constraints of 5% and
100%. This is due to two reasons. Firstly, the DTW execution
time of ARM with DTW constraints of 5% is much less
than that with DTW constraints of 100%. However, the DTW
execution time of DTW-FPGA is the same for configurations
with DTW constraints of 5% and 100%. The second reason
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(a) Template number=4, warping constraint=5% (b) Template number=40, warping constraint=5% (c) Template number=400, warping constraint=5%

(d) Template number=4, DTW constraint=100% (e) Template number=40, DTW constraint=100% (f) Template number=400, DTW constraint=100%

Fig. 11. Execution time and speedup of anomaly detection with different template number and DTW constraints.

is that the lower bound method, LBKeogh, can prune more
sequences with lower DTW constraints. In some situations the
energy efficiency of ARM+FPGA is lower than that of ARM,
even though the speedup for ARM+FPGA is higher. This is
due to the fact that the power consumption of ARM+FPGA is
higher than ARM.

C. Classification with k-Nearest Neighbors

1) Experiment setup: 20 datasets [21] with different
sequence lengths are selected for classification, and the optimal
DTW constraint for each dataset is also indicated in the dataset.
Thus the DTW constraint is assigned according to [21] (ranges
from 0 to 12%) rather than 5%. kNN is used for classifications.

2) Results: Fig. 9(a) shows the accuracy varies with
different configurations. It can be concluded that ARM+FPGA
and ARM have almost the same accuracy with different DTW
constraints. The execution time is presented in Fig. 9(b) and
Fig. 9(c). It can be learned that ARM+FPGA is faster than
ARM, and it can get an average speedup of 16.79x and
1.13x for DTW constraints of the optimal value and 100%,
respectively. The average improvements of energy efficiency
of ARM+FPGA over ARM are 0.64x and 9.41x for DTW
constraints of the optimal value and 100%, respectively. It can
be also found that energy efficiency and speedup vary with
different datasets. As the phenomenon of speedup and energy
efficiency are almost the same with the previous subsection,
further discussions are ignored here.

D. Anomaly Detection

1) Experiment setup: The long ECG data [22] is divided
to sequences with a length of 96 on ARM for segmentation.
The peak points are from the annotations.txt from the
database. With the peak point ai, we get the segmented
sequence as ai−31, ..., ai, ...ai+64. The first dimension of the

two-dimension data is selected as representative. A training
processing is needed to obtain Threshold. The first W normal
sequences are stored as templates. The following 100 normal
sequences are used for training Threshold. The rest of the
ECG sequences are treated as the data to be detected.

2) Results: As shown in Fig. 10, accuracies of ARM and
ARM+FPGA are almost the same with the same parameters.
Fig. 11 shows the comparison of ARM and ARM+FPGA
with different configurations. The speedup varies from 1.70x
to 12.20x with different datasets, template number and DTW
constraints. As the template number increases, the speedup
also increases. This is due to the fact that templates are all
normal sequences and similar to each other. Thus, the pruning
power of software optimizations weaken. The energy efficiency
improvements of ARM+FPGA over ARM are 0.96x-6.83x.
The speedup and energy efficiency with DTW constraints of
5% and 100% have the same discipline discussed in IV-B.

E. Further Discussion

Accuracies of ARM and ARM+FPGA with different con-
figurations are almost the same with the three widely-used
tasks, similarity search, classification, and anomaly detection.
Thus, the proposed DTW acceleration architecture can effec-
tively process tasks almost without accuracy loss.

The speedup and energy efficiency vary for different tasks.
The average improvements are 7.52x and 4.23x for the three
tasks, in which the similarity search has the lowest speedup.
This is due to the fact that once it gets a low DTW value, it can
be used in the rest of the calculation so that a lot of sequences
can be pruned. However, the processing of classification and
anomaly detection is independent for each test data.

In the experiments, only two conditions of DTW con-
straints, DTW constraints of 5% and 100% (or no DTW
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constraint) are considered as examples, which are appropriate
to reveal its features due to the following reasons. The pruning
power of LBKeogh has a firm relationship with DTW con-
straints: a lower DTW constraint corresponds to a tight lower
bound, which leads to a great pruning power. Therefore, the
speedup and energy efficient improvement both monotonously
increase with DTW constraints, e.g., the speedup with a DTW
constraint of 20% in the classification experiment should have
a value between 1.13x and 16.79x.

There exists some situations that the energy efficiency
improvement is below one, which means the proposed ar-
chitecture is less energy efficient than ARM. This can be
improved with two approaches. The first method is to make
the DTW interface and DTW-FPGA sleep for a period of time
when it is idle. The second method is realized in a more
experiential way, which employs ARM only for tasks that has
a low energy efficiency. This is extremely suitable for tasks
with great pruning power by software optimizations.

An comparison with related work is shown in TABLE
IV. The work [14] has achieved an energy efficiency im-
provement of 1.54x with instruction extensions for frequently-
used operations. In order to realize instruction extensions, the
ARM softcore is selected with a relatively low clock frequency
of 100MHz. In the proposed DTW acceleration architecture,
pipelined DTW implementation on FPGAs can better speedup
DTW calculations. The hardcore ARM is more energy-efficient
for software optimizations of DTW. Thus, we achieve a much
higher energy efficiency improvement of 4.23x. It should
be noted that the speedup achieved by replacing a software
floating-point library in C with a a double-precision floating-
point unit (FPU) in [14] is ignored here. It should also be
highlighted that only similarity search is tested in [14], while
our work has tested three tasks including similarity search,
classification, and anomaly detection. If only similarity search
is considered, the speedup and energy efficiency improvement
of the proposed DTW acceleration architecture is 6.65x and
3.76x, respectively.

TABLE IV. COMPARISON WITH RELATED WORK

Approach ARM Core
(Clock

Frequency)

Acceleration
Method

Speedup Energy Efficiency
Improvement

[14] Softcore
(100 MHz)

Instruction
extension

1.42x 1.54x

This
work

Hardcore
(800 MHz)

Parallel
DTW

7.52x 4.23x

V. CONCLUSION

In this paper we have proposed an DTW acceleration
architecture based on ARM and FPGA for stream data mining
on sensor-based embedded devices. Software optimizations
for DTW are implemented on ARM, and pipelined DTW is
implemented on FPGAs for further accelerations. The tasks
on ARM with software optimizations can easily invoke the
DTW interface as a sub-function. The sequence length, the
number of templates and the DTW constraint are all supported
by the DTW interface. Three popular tasks in stream data
mining, similarity search, classification, and anomaly detection
are implemented in the experiments. Compared with ARM
implementations, the average speedup and improvement of en-
ergy efficiency of the proposed DTW acceleration architecture
are 7.52x and 4.23x, respectively.
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