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Abstract—This work explores the weight binarization of
the deconvolution-based generator in a Generative Adversarial
Network (GAN) for memory saving and speedup of image
construction on the edge. Our study suggests that different
from convolutional neural networks (including the discriminator)
where all layers can be binarized, only some of the layers in the
generator can be binarized without significant performance loss.
Supported by theoretical analysis and verified by experiments, a
direct metric based on the dimension of deconvolution operations
is established, which can be used to quickly decide which layers
in a generator can be binarized. Our results also indicate that
both the generator and the discriminator should be binarized
simultaneously for balanced competition and better performance
during training. Experimental results on CelebA dataset with
DCGAN and original loss functions suggest that directly applying
state-of-the-art binarization techniques to all the layers of the
generator will lead to 2.83 x performance loss measured by sliced
Wasserstein distance compared with the original generator, while
applying them to selected layers only can yield up to 25.81x
saving in memory consumption, and 1.96x and 1.32x speedup
in inference and training respectively with little performance loss.
Similar conclusions can also be drawn on other loss functions
for different GANSs.

Index Terms—generative adversarial network, compression,
binarization, deconvolution, compact model

I. INTRODUCTION

ENERATIVE adversarial networks (GANs), which are

spin-offs from conventional convolutional neural net-
works (CNNs), have attracted much attention in the fields of
reinforcement learning, unsupervised learning and also semi-
supervised learning [1]-[3]. A GAN is composed of two parts:
a discriminator and a generator. Usually, discriminators are im-
plemented by convolutional neural networks, while generators
are implemented by deconvolutional neural networks. More
details about GANs will be presented in Section II-B.

Some promising applications based on GANs include im-
ages reconstruction with super-resolution, art creation and
image-to-image translation [4], many of which can run on
mobile devices (edge computing). For example, one potential
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application of GANs allow videos to be broadcast in low
resolution and then reconstructed to ultra-high resolution by
end users [5] as shown in Fig. 1.
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Fig. 1. Low resolution broadcast based on GAN.

However, the resources required by GANs to perform com-
putations in real-time may not be easily accommodated by
mobile devices. For example, constructing an image of 64x64
resolution with deep convolutional generative adversarial net-
work (DCGAN) [6] requires 86.6 MB of memory, most of
which is used for the generator. The memory goes up to 620.8
MB for 1024 x1024 resolution [7], and up to about 800 MB
for the popular 4K video with resolution of 3840x2160. On
the other hand, one of the state-of-the-art mobile processors,
A12 Bionic in the newest iPhone XS Max [8], provides only
4 GB RAM, most of which must be occupied by the operating
system and its peripheries. As a result, developers must restrict
neural network models to just a few megabytes to avoid crash
[9]. The memory budget gets even tighter when it comes to
mobile devices of smaller form factor such as Apple Watch
series 3, which only has 768 MB RAM.

The same problem has been well known for conventional
CNN:gs, and various solutions have been proposed via redesign-
ing the algorithms and/or computation structures [10]-[13].
Among them, quantization until binary is one of the most
popular techniques as it fits hardware implementation well
with high efficiency [9], [14], [15]. However, quantization
can reduce the expressive power of the neural networks
significantly and the discrete parameters make the optimiza-
tion much more difficult. Naive quantization usually leads to
total failure especially for binarization. Significant effort has
been devoted to develop better quantization and binarization
methods as well as the hardware accelerator [14], [16]-[19]. Its
success on CNNs has been demonstrated by multiple works,
where memory consumption is deeply compressed although
sometimes the performance cannot be preserved [20]—-[23].

Compression techniques can be readily applied to discrim-
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inator networks in GANs, which are nothing different from
conventional CNNs. It may be alluring to also apply the
quantization techniques to binarize generators, especially the
deconvolution-based [24] ones as the computation process
looks similar. However, instead of distilling local information
from a global map as in convolution operations, deconvolution
attempts to construct the global map by local information.
This difference can lead to significantly different binarization
results, as will be discussed in Section III. Accordingly, a
scheme tailored to deconvolution-based generators is war-
ranted.

In this paper, we show through theoretical analysis that
under certain conditions, binarizing a deconvolution layer may
cause significant performance loss, which also happens in
compression of CNNs per empirical findings so far. Since
there is no explanation for this phenomenon to the best of
the authors’ knowledge, an intuitive guess is that not all
layers can be binarized together while preserving performance.
Thus, some layers need to stay in the format of floating
point for performance, while others can be binarized without
affecting performance. To quickly decide whether a layer can
be binarized, supported by theoretical analysis and verified
by experiments, a simple yet effective metric based on the
dimension of deconvolution operations is established. Based
on this metric, we can make use of existing compression
techniques to binarize the generator of GANs with little
performance loss. We then propose the scheme of partial
binarization of deconvolution-based generators (PBGen) under
the guide of the metric.

Furthermore, we find that only binarizing the generator
and leaving discriminator network unchanged will introduce
unbalanced competition and performance degradation. Thus,
both networks should be binarized at the same time. Experi-
mental results based on CelebA suggest that directly applying
state-of-the-art binarization techniques to all the layers of
the generator will lead to 2.83x performance loss measured
by sliced Wasserstein distance compared with the original
generator, while applying them to selected layers only can
yield up to 25.81x saving in memory consumption, and 1.96x
and 1.32x speedup in inference and training respectively with
little performance loss. The conclusions will stay the same
even though different loss functions are utilized.

The remainder of the paper is organized as follows. Section
IT discusses related work and background for compression
techniques for CNN as well as GANs. Section III exhibits
the theoretical analysis on the power of representation in
deconvolution/convolution layers and the algorithm for model
binarization based on it. Experiments for verification and per-
formance are displayed in Section IV. This work is concluded
in Section V.

II. RELATED WORK AND BACKGROUND
A. CNN Compression

Compression techniques for CNNs mainly consist of prun-
ing, quantization, re-structure and other approximations based
on mathematical matrix manipulations [10], [25], [26]. The
main idea of the pruning method in [21] is to “prune”

connections with smaller weights out so that both synapses and
neurons are possible to be removed from the original structure.
This can work well with traditional CNNs and reduce the
number of parameters of AlexNet by a factor of nine [21]. Re-
structure methods modify network structures for compression,
such as changing functions or block order in layers [20], [26].

In this work, we focus on the quantization technique.
Quantization aims to use fewer bits to present values of
weights or even inputs. It has been used to accelerate CNNs in
various works at different levels [27]-[29] including ternary
quantization [16], [30] and iterative quantization [31], with
small loss. In [10], the authors proposed to determine weight
sharing after a network is fully trained, so that the shared
weights approximate the original network. From a fully trained
model, weights are clustered and replaced by the centroids
of clusters. During retraining, the summation of the gradients
in same groups are used for the fine-tuning of the centroids.
Through such quantization, it is reported to be able to com-
press AlexNet up by around 8% before significant accuracy
loss occurs. If the compression rate goes beyond that, the
accuracy will deteriorate rapidly.

Numerous recent work [14], [20], [23], [32]-[35] pushed it
further by using binarization to compress CNNs, where only a
single bit is used to represent values. Training networks with
weights and activations constrained to =1 was firstly proposed
in [33]. Through transforming 32-bit floating point weight
values to binary representation, CNNs with binary weights and
activations are about 32x smaller. In addition, when weight
values are binary, convolutions can be estimated by only
addition and subtraction without multiplication, which can
achieve around 2.0x speedup. However, the method introduces
significant performance loss. To alleviate the problem, [20]
proposed Binary-Weight-Network, where all weight values are
binarized with an additional continuous scaling factor for each
output channel. We will base our discussion on this weight
binarization afterwards, which is one of the state-of-the-art
binarization methods.

Most recently, hybrid quantization has attracted more and
more attention, because it enables better trade-off between
compression and performance [36]-[38]. As for partial bi-
narization, a sub-area of hybrid quantization, on which we are
focused, both training methods [39] and the corresponding
hardware accelerators [19], [40] are also investigated ex-
tensively. The actual performance after compression heavily
depends on the configuration of the partial binarization, i.e.
which layers are binarized while others are not. Given the
fact that the search space is too large to do exhaustive search,
finding the optimal or near-optimal configuration becomes
a foremost challenge. [41] shows that adding full precision
residual connections helps to reduce the loss of classifica-
tion accuracy while getting excellent memory compression.
One potential drawback of this method is that it introduces
additional memory overhead. [39] presents flexible network
binarization with layer-wise priority, which is defined by the
inverse of layer depth empirically. [42] proposes to use the
binarization error of each layer as the indication of its im-
portance to the final performance. They empirically show that
partial binarization leads to significant improvement over fully
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binarized models. Very recently, [43] also utilizes Principal
Component Analysis (PCA) to identify significant layers in
CNNs and uses higher precision on important layers. However,
this method depends on pre-trained models, and PCA contains
a large amount of computation naturally.

All things considered, none of the existing work explored
the compression of generators in GANs, where deconvolution
replaces convolution as the major operation. Note that while
there is a recent work that uses the term of “binary generative
adversarial networks” [44], it is not about the binarization
of GANSs. In that work, only the inputs of the generator are
restricted to binary code to meet the specific application re-
quirement. All parameters inside the networks and the training
images are not quantized.

B. GAN

GAN was developed by [45] as a framework to train a
generative model by an adversarial process. In a GAN, a
discriminative network (discriminator) learns to distinguish
whether a given instance is real or fake, and a generative
network (generator) learns to generate realistic instances to
confuse the discriminator.

Originally, the discriminator and the generator of a GAN
are both multilayer perceptrons. Researchers have since pro-
posed many variants of it. For example, DCGAN transformed
multilayer perceptrons to deep convolutional networks for
better performance. Specifically, the generator is composed
by four deconvolutional layers. GANs with such a convolu-
tional/deconvolutional structure have also been successfully
used to synthesize plausible visual interpretations of given
text [46] and to learn interpretable and disentangled repre-
sentation from images in an unsupervised way [47]. Wasser-
stein generative adversarial networks (WGAN) [48] and least
squares generative adversarial networks (LSGAN) [49] have
been proposed with different loss functions to achieve more
stable performance, yet they both employed the deconvolution
operations too. To verify the robustness of our analysis, both
DCGAN and LSGAN are tested in our experiments.

III. ANALYSIS ON POWER OF REPRESENTATION

In this section, to decide whether a layer can be binarized,
we analyze the power of a deconvolution layer to represent
any given mapping between the input and the output, and
how such power will affect the performance after binarization.
We will show that the performance loss of a layer is related
to the dimension of the deconvolution, and develop a metric
called the degree of redundancy to indicate the loss. Finally,
based on the analysis, several inferences are deduced at the
end of this section, which should lead to effective and efficient
binarization.

In the discussion below, we ignore batch normalization as
well as activation operations and focus on the deconvolution
operation in a layer, as only the weights in that operation
are binarized. The deconvolution process can be transformed
to equivalent matrix multiplication. Let D! (€ Re&*hixwi,
where c¢;, h; and w; are number of channels, height and
width of the input respectively) be the input matrix, and D¢

(€ Reoxhoxwo where ¢,, h, and w, are the number of
channels, height and width of the output respectively) be the
output matrix. Denote K (€ R XX Xwk where hy, and
wy, are the height and width of a kernel in the weight matrix)
as the weight matrix to be deconvoluted with D’. Padding is
ignored in the discussion, since it will not effect the results.

For the deconvolution operation, the local regions in the
output can be stretched out into columns, by which we can
cast DO to DO € R® %" where s; = hyw;, 7o = CohrWi.
Similarly, D'd e RsX% can be restructured from DY,
and K? € R%*™ can be restructured from K, where
s;i = hyw;,r, = cohrwy. Please refer to [50] for details
about the transform. Then, the deconvolution operation can
be compactly written as

D9 =D« K%, (1

where * denotes matrix multiplication. D¢ and D% are the
matrices containing pixels for an image or an intermediate
feature map. During the training process, we adjust the values
of K¢ to construct a desired mapping between D¢ and D94

We use (-); to denote the j-th column of a matrix. Then
(1) can be decomposed column-wise as

DY =D"«KJ, 1<j<r, )
where K? € R and DJ-Od € R%.

Now we analyze a mapping between an arbitrary input D?¢
and an arbitrary output D]-Od. From (2), when the weights are
continuously selected, all vectors that can be expressed by the
right hand expression is a subspace €2 spanned by the columns
of D19, the dimension of which is ¢;. Here we have assumed
without loss of generality that D’ has full column rank. When
¢; < 8i, which is the dimension of the output space ® where
D?d lies, 2 is of lower dimension than ®, and accordingly,
DJ-Od can either be uniquely expressed as a linear combination
of the columns in D¢ if it lies in € (i.e. a unique K? exists),
or cannot be expressed if it is not (i.e. no such K? exists).
When ¢; = s;,  and ® are equivalent, and any D¢ can
be uniquely expressed as a linear combination of the columns
in D4, When ¢; > s;, Q and ® are still equivalent, but any
D7 can be expressed as an infinite number of different linear
combinations of the columns in D¢, In fact, the coefficients
K;l of these combinations lie in a (¢; — s;)-dimensional sub-
space .

The binarization imposes a constraint on the possible values
of the elements in K;l. Only finite number of combinations are
possible. If ¢; < s;, then at least one of these combinations
has to be proportional to the unique K? that yields the desired
D$? to preserve performance. If ¢; > s;, then one of these
combinations needs to lie in the subspace W to preserve
performance. Apparently, the larger the dimension of W is, the
more likely this will happen, and the less the performance loss
is. A detailed math analysis is straightforward to illustrate this,
and is omitted here in the interest of space. Accordingly, we
define the dimension of ¥, ¢; —s;, as the degree of redundancy
in the rest of the paper. Note that when this metric is negative,
it reflects that €2 is of lower dimension than ® and thus this
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deconvolution layer is more vulnerable to binarization errors.
In general, a higher degree of redundancy should give lower
binarization error.

We will use a small numerical example to partially validate
the above discussion. We construct a deconvolution layer and
vary its degree of redundancy by adjusting the c; in it, where
s; = 20. For each degree of redundancy we calculate the
minimum average Euclidean distance between the original
output and the output produced by binarized weights, which
reflects the error introduced through the binarization process,
referred to as binarization error throughout the paper. The
binarization error is obtained by enumerating all the possible
combinations of those binary weights. The results are depicted
in Fig. 2. From the figure we can see that the error decreases
with the increase of degree of redundancy, which matches our
conjecture.
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Fig. 2. Binarization error v.s. degree of redundancy for a deconvolution layer.
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Fig. 3. Degree of redundancy v.s. layer number for DCGAN. The intermediate
feature maps at the output of each layer as well as the final output are also
presented.

For generators in most state-of-the-art GAN models [6],
[49], we find that the degree of redundancy reduces with the
increase in depth, eventually dropping below zero. Such a
decrease reflects the fact that more details are generated at
the output of a layer as its depth grows, as can also be seen
in Fig. 3. These details are highly correlated, and reduce the
subspace needed to cover then.

Based on our analysis, several inferences can be deduced to
guide the binarization:

o With the degree of redundancy, taking advantage of exist-
ing binarization methods becomes reasonable and feasi-
ble. Binarizing layers with higher degree of redundancy
will lead to lower performance loss after binarization,
while layers with negative degree of redundancy should
be kept un-binarized to avoid excessive performance loss.

¢ According to the chain rule of probability in directed
graphs, the output of every layer is only dependent on
its direct input. Therefore, the binarizability of each layer
can be superposed. If a layer can be binarized alone, it
can be binarized with other such layers.

o When binarizing several deconvolution layers together,
the layer with the least degree of redundancy may be the
bottleneck of the generator’s performance.

As a result, only shallower layer(s) of a generator can be
binarized together to preserve its performance, because of the
degree of redundancy trend in it. This leads to PBGen. Besides,
such analysis may also explain why binarization can be applied
in almost all convolution layers: distilling local information
from a global map leads to positive degree of redundancy.

Under the guide of such inferences, the algorithm for wise

binarization on Deconv/Conv networks can be implemented by
calculating the degree of redundancy for every Deconv/Conv
layer at first; then all these layers can be sorted by their degree
of redundancy from high to low; in this order, every layer
will be binarized singly to observe the difference in perfor-
mance from the original full-precision version and whether
to continue or not will be decided by the trade-off between
performance and efficiency; finally, selected layers will be
binarized together to serve as the ultimate strategy for network
binarization. This algorithm can be described as Algorithm 1.
We attempt to preserve the original full-precision performance
in our experiments.

Algorithm 1 Wise binarization on Deconv/Conv networks

L < number of Deconv/Conv layers
T < performance degradation threshold
for(=1:L do

Compute the degree of redundancy of each layer R;
end for
R « sorted R; --- , Ry, from high to low
1+ 1
while i < L do

Binarize the i-th layer

if performance degradation exceeds 1" then

break

end if

1 1+1
end while
return ¢
The network binarization strategy is to binarize the first 1—1
layers according to R together

In addition, following the same derivation process for de-
convolution in our manuscript, the degree of redundancy of a
convolution layer can be defined as wy, X hg X ¢; — ¢, instead
of ¢; — s; for deconvolution. Usually in a convolution layer,
Co = 2 X ¢;, wp = hg, and wp, = 3 or 5. As a result, the
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Generated
64 Images

Fig. 4. Structure of the generators in DCGAN with dimension of each layer
labeled. Deconvolutional layers are denoted as “CONV” (figure credit: [6]).

degree of redundancy is usually positive, and convolution is
more readily binarizable compared to deconvolution as well.
This also explains why using 1 x 1 kernels will help compress
networks while not hurting the networks’ performance [51].

IV. EXPERIMENTS
A. DCGAN and Different Settings

DCGAN will serve as a vehicle to verify the inferences
deducted from the theoretical analysis in Section III. Except
for the original adversarial loss function for DCGAN, least
square loss function proposed in LSGAN is also tested in our
experiments. The least square loss is one of the most popular
loss functions for GANs, because it has been proved to be
efficient for different GANSs training.

We will explore how to best binarize it with preserved
performance. Specifically, we use the TensorFlow [52] im-
plementation of DCGAN on GitHub [53]. The structure of
its generator is illustrated in Fig. 4. The computed degree
of redundancy in each layer in the generator is shown in
Fig. 3 and qualitatively summarized in TABLE 1. The degree
of redundancy in the last layer drops to -960. According to
the inferences before, we can expect that since the degree
of redundancy decreases as the depth increases, binarizing
shallower layers and keeping the deeper layers in the format
of floating point will help preserve the performance. For the
readers’ information, the degrees of redundancy of the four
convolution layers in the discriminator are 11, 1472, 2944,
and 5888 respectively.

TABLE I
DEGREE OF REDUNDANCY IN EACH DECONVOLUTION LAYER OF THE
GENERATOR IN DCGAN

Layer number | Label in Fig. 4 | Degree of redundancy
1 CONV 1 496
2 CONV 2 192
3 CONV 3 -128
4 CONV 4 -960

The binarization method used in Binary-Weight-Networks
(BWN) proposed in [20] is adopted to binarize layers no matter
in a generator network or in a discriminator network. In BWN,
all the weight values are approximated with binary values.
Through keeping floating-point gradients while training, BWN
is able to trained from scratch without pre-train.

There are four deconvolution layers in total in the generator,
and each layer can be either binarized or not. For verification,

TABLE I
SETTINGS OF DIFFERENT PARTIAL BINARIZATION OF GENERATOR IN
DCGAN
Setting | Layer(s) binarized Dlsgrun_mator
binarized

A None N

B I N

C 2 N

D 3 N

E 4 N

F 1,2,3 N

G 1,234 N

H 1,2,3 Y

we have conducted experiments on all 2* = 16 different

settings, but only the eight representative ones are discussed
for clarity and space, and others will lead us to the same
conclusion. Those eight different representative settings are
summarized in TABLE II for clearness. In this table, the
“Setting” column labels each setting. “Layer(s) binarized”
indicates which layer(s) are binarized in the generator. The
“Discriminator binarized” column tells whether the discrimi-
nator is binarized or not. “Y” means yes, while “N” means
no. This column is introduced to verify an observation in
our experiments to be discussed later. Although settings in
experiments include unbinarized discriminator and binarized
discriminator, whether the discriminator is binarized or not
will not affect the generated images significantly. That is, if
the generator cannot generate recognizable faces with the unbi-
narized discriminator, it still cannot generate any recognizable
faces with a binarized discriminator; and vice versa.

Setting G will serve as the baseline model for performance
after binarization, because it adopts the compression tech-
niques based on CNNs directly without considering the degree
of redundancy. On the other hand, Setting A serves as the
baseline model when considering the memory saving, speedup
as well as performance difference before and after binarization,
because it represents the original DCGAN in floating point
representation. It is considered as one common GAN structure
providing good performance.

B. Dataset and Metrics

CelebA [54] is used as the dataset for our experiments,
because it is a popular and verified dataset for different GAN
structures. DCGAN, WGAN, LSGAN and many other GAN
structures are tested on it [55]. As every image in CelebA
contains only one face, it is much easier to tell the quality of
the generated images.

Traditionally the quality of the generated images is iden-
tified by observation. However, qualitatively evaluation is
always a hard problem. According to the in-depth analysis of
commonly used criteria in [56], good performance in a single
or extrapolated metric from average log-likelihood, Parzen
window estimates, and visual fidelity of samples does not
directly translate to good performance of a GAN. On the other
hand, the log-likelihood score proposed in [57] only estimates
a lower bound instead of the actual performance.
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Fig. 5. Images generated under different settings.

Very recently, [7] proposed an efficient metric, which we
will use in our experiments, and showed that it is superior to
MS-SSIM [58], which is a commonly used metric. It calculates
the sliced Wasserstein distance (SWD) between the training
samples and the generated images under different resolutions.
In particular, the SWD from the lower resolution patches
indicates similarity in holistic image structures, while the finer-
level patches encode information about pixel-level attributes.
In this work, the max resolution is 64x64. Thus, according
to [7], we will use three different resolutions to evaluate the
performance: 16x16, 32x32, and 64x64. For all different
resolutions, small SWD indicates that the distributions of
the patches are similar, which means that a generator with
smaller SWD is expected to produce images more similar to
the images from the training samples in both appearance and
variation.

C. Experimental Results

In this section, we will present experimental results that
verify our inferences in Section III, along with some additional
observations about the competition between the generator
and the discriminator. The images generated by the original
GAN (Setting A), in which all weights of each deconvolution
layer are in the form of floating point, are displayed in Fig.
5a. The images generated by the binarized DCGAN without
considering the degree of redundancy are displayed in Fig. 5g.
These are our two baseline models.

1) Qualitative Comparison of Single-Layer Binarization :
We start our experiments by comparing the images generated
by binarizing a single layer in the generator of DCGAN. The
results are shown in Figures 5b - Se, which are generated by
PBGen’s under Setting B - Setting E respectively. In other

O ™

(g) Setting G (h) Setting H

0.6
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Fig. 6. SWD v.s degree of redundancy of the binarized layer in different
settings.

words, those PBGen’s utilize binary weights to the first, the
second, the third, and the last deconvolution layer respectively.
The degree of redundancy of each layer is shown in Fig.
3. From the generated figures we can then see that Fig. 5b
generates the highest quality of images, similar to the original
ones in Fig. 5a. Images in Fig. 5c are slightly inferior to those
in Fig. 5b, but better than those in Fig. 5d. Fig. S5e has no
meaningful images at all. These observations are in accordance
with our inferences in Section III: the performance loss when
binarizing a layer is decided by its degree of redundancy,
and a layer with negative degree of redundancy should not
be binarized.

To address the concern that low performance of Setting E is
caused by the low degree of redundancy instead of the position
of the layer (the last layer), more experiments are conducted
under Setting E. As analysed in Section III, degree of redun-
dancy is defined by ¢; — s;, thus changing ¢; of one layer will
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(c) 256
Fig. 7. Generated images of faces under Setting E with different number of
input channels for the CONV4 layer. The number of the CONV4 layer for
each experiments is (a) 64, (b) 128, (c) 256, (d) 512, and (e) 1024 respectively.
With the increased number of input channels in the CONV4 layer, the degree
of redundancy of this layer increases while other layers’ degree of redundancy

stays the same. This validates the degree of redundancy as an indication of
the capability for a layer.

(a) 64

(b) 128A

(e) 1024

only change the degree of redundancy of that layer, and will
not have an effect on other layers’ degree of redundancy. Thus,
experiments with different number of input channels for the
CONV4 layer, c4, under Setting E. The generated images of
faces in these experiments are shown in Fig. 7. The original
c4 1s 64, and experiments are also conducted with 128, 256,
512, and 1024 respectively. According to TABLE I, the degree
of redundancy of CONV4 is zero when ¢4 = 1024. As shown
in Fig. 7, the generated images get clearer with more details
along with the increased number of input channels and higher
degree of redundancy.

In addition, we also conducted the experiments that vary
the DOR of the first three layers when binarizing the fourth
layer to validate that every layer binarization is relatively
independent. In fact, none of these experiments could achieve
the same performance improvement as that when increasing
the DOR of the fourth layer by a same number. Generated
images are shown in Fig. 8.

3

(b) CONV1

(a) None
Fig. 8. Generated images of faces after binarizing the CONV4 layer. The
layer with increased DOR for each experiment is (a) none, (b) CONVI, (c)
CONV2, (d) CONV3, and (e) CONV4 respectively. The DOR is increased by
960 for each experiment except for (a). We can see that increasing the DOR

of other layers cannot solve the bottleneck problem introduced by CONV4,
but increasing the DOR of CONV4 can.

2) Quantitative Comparison of Single-Layer Binarization:
We further quantitatively compute the SWD values with
1616, 32x32 and 64x64 resolutions for Setting B, Setting
C, Setting D, and Setting E. Their relationship with the degree
of redundancy of the binarized layer is plotted in Fig. 6. From
the figure, two things are clear: first, regardless of resolution,
a negative degree of redundancy (Setting E) results in a more
than 5x increase in SWD compared with other settings with
non-negative degree of redundancy (Setting B, Setting C,
and Setting D). Second, for all the three resolutions, SWD
decreases almost linearly with the increase of the degree of
redundancy when it is non-negative. This confirms that our
degree of redundancy can capture the impact of binarization
not only on the holistic structure but also on the pixel-level
fine details, and as such, is indeed a good indicator to quickly
judge whether a layer can be binarized.

We also report the SWD averaged over different resolutions
(16x16, 32x32, 64x64) in TABLE III, where the result for
the original GAN (Setting A) is also reported. From the table
we can draw similar conclusions, that binarizing second layer
(Setting C) increases the average SWD by 2.3% compared
with the original GAN (Setting A), while binarizing third and
fourth layer (Setting D and Setting E) further increases it by
52.3% and 913.6%, respectively.

s

0.1
0.08 el setting A
setting B
8 0.06
=
w2
0.04
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0.02 )
16%16 32x32 64x64
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Fig. 9. SWD v.s. resolution for SWD score calculation under Setting A and
Setting B.

TABLE III
AVERAGE SWD UNDER DIFFERENT SETTINGS

Setting A B C D E
Average SWD (x10~3) 44 38 45 67 449

It is interesting to note that the average SWD achieved by
binarizing the first layer (Setting B) is 13.6% smaller than
that from the original DCGAN (Setting A). To further check
this, we plot the SWD v.s. resolution for these two settings
in Fig. 9. From the figure we can see that the SWD from
Setting B is always smaller than that from Setting A across all
three resolutions. This shows that Setting B can achieve better
similarity as well as detailed attributes. Such an improvement
is probably due to the regularization effect, and similar effect
has been observed in the compression of CNNs [32].

3) Validation of Superposition of Binarizability: We now
explore experiments to verify our inference that all layers
that can be binarized alone can be binarized together. The
images generated by Setting F in Fig. 5f, where the first
three layers in the generator are binarized together, show no
significant difference from those in Figures 5a- 5d. Binarizing
any two layers from the first three layers (not shown here)
will lead to the same result. On the other hand, Setting G
does not generate any meaningful output (Fig. 5g), as the last
layer, which cannot be binarized alone, is binarized together
with the first three layers. Binarizing any of the first three
layers as well as the last layer (not shown here) will produce
meaningless results too. Setting G follows the state-of-the-
art binarization for CNNs directly without considering the
degree of redundancy. That is, with the assistance of the
degree of redundancy, we can figure out that at most the first
three deconvolution layers can be binarized with small loss on
performance in the generator (Setting F). Nevertheless, directly
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(e) Setting E

(f) Settmg F

Fig. 10. Images generated under different settings using the least square loss.

adopting the existing binarization method will lead to excess
degradation in performance and cannot provide any hint to
improve (Setting G).

0.15
‘ =l setting D

0.1 =@ =setting F
[
Z
2]

0.05 —

- -

16x16 32x32

Resolution

64x64

Fig. 11. SWD v.s. resolutions under Setting D and Setting F.

Moreover, the average SWD for Setting F is 0.067, the
same as Setting D. Further looking at the SWD values under
different resolutions for the two different settings as shown
in Fig. 11, it is clear that the two curves are very close.
This validates our last inference, that when multiple layers are
binarized together, the layer with least degree of redundancy
is the bottleneck, which decides the overall performance of
the network.

4) Experimental Results Using the Least Square Loss: The
experiments using the least square loss resulted are in accord
with our previous experimental results as well as conclusions.

For each layer, the performance after binarization decreases
along with the layer’s redundancy. The images generated by
binarizing a single layer in the generator after training using
the least square loss are shown in the Fig. 10. Same as in
Fig. 5, Fig. 10a displays the original results using the least
square loss. Figures 10b - 10e are generated by PBGen’s

(h) Settlng H

(U &
Q )

(g) Settin,

under Setting B - Setting E respectively using the least square
loss. As mentioned before, the degree of redundancy of each
layer is shown in Fig. 3, which decreases along each layer.
As a result, the quality of the generated images also decreases
along binarizing each layer under Setting B, Setting C, Setting
D, and Setting E. This is the same as that observed in the
experiments based on the original loss function in DCGAN.

The superposition of binarizability also holds in the exper-
iments based on the least square loss. The images generated
by Setting F in Fig. 10f, where the first three layers in the
generator are binarized together, show no significant difference
from those in Figures 10a- 10d. Binarizing any two layers from
the first three layers (not shown here) will lead to a similar
result. On the other hand, Setting G does not generate any
meaningful output (Fig. 10g), as the last layer, which cannot
be binarized alone, is binarized together with the first three
layers. Binarizing any of the first three layers as well as the
last layer (not shown here) will produce meaningless results
too. Setting G follows the state-of-the-art binarization for
CNNs directly without considering the degree of redundancy
based on the least square loss. That is, with the assistance
of the degree of redundancy, we can figure out that at most
the first three deconvolution layers can be binarized with
small loss on performance in the generator (Setting F) even
based on the least square loss in DCGAN. Nevertheless,
directly adopting the existing binarization method will lead
to excessive degradation in performance and cannot provide
any hint to improve (Setting G), even if a better loss function,
the least square loss, is used.

5) Compression Saving: We also investigate the computa-
tion saving during training and inference and memory reduc-
tion of partially binarized deconvolution-based generators in
hardware designs. Since BWN in [20] is adopted to binarize
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layers, the same estimation on computation saving and mem-
ory cost as BWN is also utilized.

Note that each binarized weight is 32x small over its
single precision presentation. Assume that out of a total of
N weights, K are binarized. Then the new memory cost can
be computed as

(K +32 x (N — K))/(32 x N). 3)

On the other hand, [20] mentioned the computation saving is
~ 2x after binarization for a standard convolution operation,
because multiplication is replaced by only addition and sub-
traction. This is also the situation when weights are binarized
in a deconvolution operation, so the computation saving is
adopted for a standard deconvolution operation. That is, the
new computation cost can also be calculated using (3) by
replacing weights with deconvolution operations, and using
2 instead of 32.

TABLE IV
TRAINING AND INFERENCE SPEEDUP AS WELL AS MEMORY REDUCTION
FOR PBGEN

Generator model Computation Saving Memory
Inference | Training Cost
Original generator from DCGAN
(Setting A) LOx L.OX 1.0x
PBGen
(Setting F) ~1.96x | ~1.32x | ~1/25.81x

TABLE IV summarizes the computation saving during
training and inference as well as the memory reduction for
PBGen compared with the original generator in DCGAN,
which is the baseline model when considering the computation
saving and the memory saving. PBGen under Setting F can
achieve 25.81x memory saving as well as 1.96x and 1.32x
speedup during inference and training respectively with little
performance loss. For both the original generator and PBGen,
during the training process the floating point representation
of all weights need to be used for backward propagation and
update [20]. As such, the speedup mainly comes from faster
forward propagation with binarized weights.

The relationship between the memory saving and the input
channel number of the fourth deconvolution layer (CONV4)
on the generator is also investigated. Note that increasing
the input channel number of the fourth convolution layer
(CONV4) will increase its DOR and at the same time the
memory cost. On the other hand, eventually a high enough
DOR (above 1024) will enable the layer to be binarized,
leading to memory reduction. This can be seen in Fig. 12,
where x-axis is the input channel number of CONV4 and the y-
axis is the total memory cost of the generator normalized to the
original generator without any binarization. Before the input
channel number of CONV4 reaches 1024, only the first three
deconvolution layers can be binarized, so increasing DOR will
result in the quick growth of memory cost. However, when
the input channel number of CONV4 is 1024, all the four
deconvolution layers can be binarized, which introduces extra
memory saving to alleviate the memory cost increment.

0.055
0.05
0.045
0.04

0.035

Normalized memory cost

0.03 >
64 128 256 512 1024

Input channel number of CONV4

Fig. 12. Memory cost (normalized to the original model without binarization)
v.s. input channel number of CONV4. Before the input channel number
of CONV4 reaches 1024, only the first three deconvolution layers can be
binarized without significant performance loss, and when the input channel
number of CONV4 is 1024, all the four deconvolution layers can be binarized
without significant loss.

6) Unbalanced Competition: So far, our discussion has
focused on the binarization of the generator in a GAN only,
as the discriminator takes the same form as conventional
CNNs. However, since competition between generator and
discriminator is the key of GANs, would a binarized generator
still compete well with a full discriminator?

The loss values for the discriminator network and PBGen
under Setting F are depicted in Fig. 13, where x-axis indicates
the number of epochs and y-axis is the loss value. The images
generated from different number of epochs are also exhibited
aside. From the figure we can see that during the initial stage,
distorted faces are generated. As the competition is initiated,
image quality improves. But very quickly, the competition
vanishes, and the generated images stop improving. However,
when we binarize the discriminator at the same time (Setting
H), the competition continues to improve image quality, as can
be seen in Fig. 14.

We further plot the loss values of the discriminator and
the generator of the original DCGAN (Setting A), and the
results are shown in Fig. 15. It is very similar to Fig. 14,
except that the competition is initiated earlier, which is due
to the stronger representation power of both the generator and
the discriminator before binarization. These figures confirm
that the quick disappearance of competition is mainly due to
the unbalanced generator and discriminator, which should be
avoided.

We now explore the quality of the images generated from
balanced competition using Setting H. The images generated
are shown in Fig. 5h and Fig. 10h, the quality of which
is apparently better than the rest in Fig. 5 and Fig. 10
respectively. To further confirm this quantitatively, we compute
the average SWD values of those images, which is 0.034 in
average. This is even smaller than any average SWD values
listed in TABLE III, which shows that the images are of better
quality, even compared with the original DCGAN.

7) Summary: To summarize the discussion and compar-
isons in this section, we plot the SWD v.s. resolution curves
for all the 8 settings in Fig. 16. It allows a complete view
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Fig. 15. Loss values of the discriminator and the generator in original DCGAN under Setting A along epochs.

of how these different settings compare in terms of similarity
as a whole and fine details. From the figure we can see that
Setting H gives the best similarity as a whole, while Setting
C yields the finest detailed attributes.

Consequently, utilizing the degree of redundancy as a tool,
we can efficiently find out eligible layers that can be binarized
and based on their superposition, a final binarization strategy
can be decided. It cannot guarantee an optimal result but does
decrease the search space for the final solution from O(2")
to O(n) or less, where n is the number of layers, because
testing on all combinations of binarization strategy is not
necessary and we only need to binarize every single layer
with high degree of redundancy to decide the final strategy.

Since our theoretical analysis and experiments are based on
deconvolutional layers, we believe this method can work for
other deconvolution based generators beyond DCGAN.

V. CONCLUSION

Compression techniques have been widely studied for con-
volutional neural networks, but directly adopting them to all
layers will fail deconvolution-based generator in generative
adversarial networks based on our observation. We propose
and validate that the performance of deconvolution-based
generator can be preserved when applying binarization to
carefully selected layers (PBGen). To accelerate the process
deciding whether a layer can be binarized or not, the degree
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Fig. 16. SWD v.s. resolutions under all different settings.

of redundancy is proposed based on theoretical analysis and
further verified by experiments. Under the guide of this metric,
search space for optimal binarization strategy is decreased
from O(2") to O(n) where n is the number of layers in the
generator. PBGen for DCGAN can yield up to 25.81x saving
in memory consumption with 1.96x and 1.32x speedup in
inference and training respectively with little performance loss
measured by sliced Wasserstein distance score. Besides, we
also demonstrate that both generator and discriminator should
be binarized at the same time for a balanced competition and
better performance.
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