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Abstract
Quantitative myocardial contrast echocardiography (MCE) has been proved to be valuable in detecting myocardial ischemia. 
During quantitative MCE analysis, myocardial segmentation is a critical step in determining accurate region of interests 
(ROIs). However, traditional myocardial segmentation mainly relies on manual tracing of myocardial contours, which is 
time-consuming and laborious. To solve this problem, we propose a fully automatic myocardial segmentation framework that 
can segment myocardial regions in MCE accurately without human intervention. A total of 100 patients’ MCE sequences 
were divided into a training set and a test set according to a 7: 3 proportion for analysis. We proposed a bi-directional training 
schema, which incorporated temporal information of forward and backward direction among frames in MCE sequences to 
ensure temporal consistency by combining convolutional neural network with recurrent neural network. Experiment results 
demonstrated that compared with a traditional segmentation model (U-net) and the model considering only forward tempo-
ral information (U-net + forward), our framework achieved the highest segmentation precision in Dice coefficient (U-net vs 
U-net + forward vs our framework: 0.78 ± 0.07 vs 0.79 ± 0.07 vs 0.81 ± 0.07, p < 0.01), Intersection over Union (0.65 ± 0.09 
vs 0.66 ± 0.09 vs 0.68 ± 0.09, p < 0.01), and lowest Hausdorff Distance (32.68 ± 14.6 vs 28.69 ± 13.18 vs 27.59 ± 12.82 
pixel point, p < 0.01). In the visual grading study, the performance of our framework was the best among these three models 
(52.47 ± 4.29 vs 54.53 ± 5.10 vs 57.30 ± 4.73, p < 0.01). A case report on a randomly selected subject for perfusion analysis 
showed that the perfusion parameters generated by using myocardial segmentation of our proposed framework were similar to 
that of the expert annotation. The proposed framework could generate more precise myocardial segmentation when compared 
with traditional methods. The perfusion parameters generated by these myocardial segmentations have a good similarity to 
that of manual annotation, suggesting that it has the potential to be utilized in routine clinical practice.

Keywords Myocardial contrast echocardiography · Deep neural network · Image segmentation · Myocardial perfusion 
parameters

Introduction

Coronary artery disease (CAD) remains the leading cause 
of cardiovascular mortality and morbidity in China. Non-
invasive imaging as the initial screening test for sympto-
matic patients suspected of myocardial ischemia is the Class 
I recommendation according to the European Society of Car-
diology [1].

As a cost-effective examination, myocardial contrast 
echocardiography (MCE) is an imaging tool for the assess-
ment of myocardial perfusion. According to the ultrasonic 
enhancing agents (UEAs) guideline by the American Society 
of Echocardiography [2], after an intravenous infusion of 
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UEAs which contain the microbubbles, the contrast imag-
ing could be generated by retaining the microbubble signal 
in the coronary artery and eliminating the myocardial tissue 
signal. By the “flash” impulse (transient high mechanical 
(MI) index impulses), which leads to microbubbles destruc-
tion and then replenishment, clinicians qualitatively assess 
myocardial perfusion by observing the intensity of myocar-
dial enhancement and counting the refill time. In terms of 
quantitative analysis, the localized time-intensity analysis 
of microvascular reentry of microbubbles can be used to 
assess the rate and extent of microbubble signal replenish-
ment, reflecting microvascular flux rate and microvascular 
blood volume, respectively.

Meta-analysis has shown that quantitative stress-rest 
MCE has good diagnostic performance in detecting CAD 
[3]. However, the clinical application of quantitative MCE 
is limited. Accurate myocardial segmentation is a prereq-
uisite for the output of reliable perfusion parameters but 
requires complex and time-consuming operation. There-
fore, if myocardial segmentation can be done automatically 
and efficiently, quantitative MCE may be popularized and 
become an important tool for detecting myocardial ischemia 
in clinic.

Myocardial segmentation of MCE sequences has the 
following challenges. First, the concentration of enhanc-
ing agents in the myocardium and left ventricular changes 
over time because of the replenishment of microbubbles 
after “flash” impulses [2, 4]. Second, the shape and pose of 
the myocardium vary with heart motion, individual differ-
ences, and scan setting [5]. Also, myocardial structure fea-
tures differ in different chamber views. Thirdly, misleading 
structures such as papillary muscles have the same intensity 
and grayscale information as myocardium, which makes it 
hard to extract accurate boundaries. Fourth, after the “flash” 
impulse associated with the destruction of microbubbles, a 
large number of signal sources are lost, resulting in a signifi-
cant reduction in the quality of the first few frames, as shown 
in supplementary Fig. 1 (Online Resource 1).

To solve the above problems, we proposed an encoder-
decoder architecture that combines convolutional neural 
networks [6, 7] and recurrent neural networks as shown in 
Fig. 1. The encoder servers as a feature extractor, which was 
able to extract a set of features from MCE sequences with 
different resolutions. The decoder used a pyramid of convo-
lutional Long Short-Term Memory (LSTM) to incorporate 
temporal information between MCE frames to ensure seg-
mentation consistency along time. The main contributions 
of our work were:

(1) We proposed an encoder-decoder architecture for myo-
cardial segmentation of MCE sequences. Our model 
was able to incorporate temporal information between 
frames in MCE sequences.

(2) To further exploit the temporal information among 
sequences, we proposed a bi-directional training 
approach which can reduce segmentation error intro-
duced by the first few sequences in the training process.

(3) We collected an MCE dataset which consists of three 
views from 100 subjects. Experimental results showed 
that our framework outperformed traditional works in 
terms of segmentation accuracy.

Materials and methods

Dataset

The database comprised of 100 patients who received 
MCE from 2019/01/01 to 2019/10/30, who were referred to 
Guangdong Provincial People’s Hospital. This observational 
study was approved by the institutional review boards of 
Guangdong Provincial People’s Hospital, and the informed 
consent of patients was obtained. The flow and the process 
for importing data are shown in Fig. 2.

For all subjects, we decomposed every MCE sequence 
into several frames, the next frame after the “flash” impulse 
is manually selected as the first frame, and the sampling 
rule is set to take one frame every other frame. We col-
lected 30 frames for each MCE sequence. There are 100 
(subjects) × 3 (chamber-views sequences per subject as 
shown as supplementary Fig. 2 (Online Resource 2)) × 30 
(frames per sequences) = 9000 frames, with 3000 frames for 
each chamber view and 90 frames for each subject. Then we 
randomly split our data set into the training set and the test-
ing set by a ratio of 7:3. Therefore, there were 70 subjects 
(210 MCE sequences) in the training set and 30 subjects (90 
MCE sequences) in the testing set. Our segmentation model 
was used for each chamber view separately.

Contrast echocardiography

An ultrasonography system with a contrast specific multi-
pulse amplitude modulation imaging algorithm (Philips 7C 
or iE ELITE, Philips Medical Systems, Best, Netherlands) 
equipped with a broadband (1 to 5 MHz) transducer was 
used, while SonoVue (Bracco Research SA, Geneva, Swit-
zerland) as UEA. SonoVue was diluted with a normal saline 
to 10 ml in total followed by 5 mL of a slow normal saline 
flush. The intravenous continues infusion rate was adjusted 
to obtain maximal opacification of the myocardium with 
minimal attenuation throughout the examination. The mean 
infusion.

rate was 2.5–3 ml/min. MCE was performed in the api-
cal two-chamber (A2C), three-chamber (A3C) and four-
chamber (A4C) views using power-modulation MCE with 
a mechanical index of 0.10 to 0.17. A transient high MI 
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(1.20–1.35) flash (10 frames) was used to clear myocardial 
microbubbles; the subsequent replenishment imaging was 
digitally captured (10 to 15 cardiac cycles) in each view with 
a frame rate of 20 to 30 Hz. The focus was set at the mitral 
valve level. Once the UEA entered the left ventricular cavity, 
MCE acquisition began. As shown in supplementary Fig. 2 
(Online Resource 2), the myocardium is divided into 17 seg-
ments which are ascribed to coronary territories according 
to the American Heart Association [8]. In perfusion analy-
sis, we manually select only end-systolic frames in order to 
reduce the effect of signals from large blood vessels in the 
myocardium on the information of microvascular blood flow 
velocity [9, 10].

Segmentation method

We proposed an encoder-decoder architecture for myocar-
dial segmentation [11–13] of MCE sequences as shown in 
Fig. 1a. The input consisted of a set of RGB frames from 
an MCE sequence. The output was a sequence of myocar-
dial segmentation of the input. The manual annotations of 
myocardial region of interests (ROIs) were performed by 
an experienced echocardiographer, and the time for labe-
ling each image was around 1 min.

Fig. 1  a The proposed myocardial segmentation architecture, which 
contains an encoder (U-Net) and a decoder (ConvLSTM). b Net-
work structure of the U-net based encoder. The rectangle denotes the 
feature maps at this layer, the number above the rectangle is chan-
nel size. The first rectangle is the input image, which has 3 channels 

as a RGB image. c Network structure of the proposed decoder. The 
input of our decoder is the features extracted from our encoder. The 
decoder consists of hierarchical ConvLSTMs and is able to incorpo-
rate temporal information between MCE frames
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Encoder

The encoder was based on U-net [14–17] which was an 
effective method for medical image segmentation tasks [18]. 
The network structure of the encoder was shown in Fig. 1b. 
We extracted five features at different resolution levels from 
the up-sampling layers as the output of our encoder. The 
features were denoted as f1, f2, f3, f4, and f5, each of which 
had 32, 64, 128, 256, and 512 feature maps, respectively. 
These features were then fit into the decoder for segmenta-
tion. The features at different resolution levels have different 
receptive filed, which enables the network to learn general 
and fine-grained information of myocardial at the same time. 
Thus, the segmentation accuracy can be improved.

Decoder

The network structure of the decoder is shown in Fig. 1c. It 
contained a hierarchical Convolutional LSTMs [19] which 
was able to incorporate the input features at different resolu-
tions. The output of the decoder was the segmentation of the 
myocardium. Inspired by the task of object tracking [20], we 
incorporated the temporal information of the myocardium in 
the previous frame as additional features to enhance the seg-
mentation of the current frame. The dash arrows in Fig. 1a 
depict the temporal recurrence in the decoder. We depicted 
the features extracted by the encoder for frame t at the level 
k as ft,k and the output of the k-th ConvLSTM layer for frame 
t as yt,k . yt,k depends on three variables: (1) the output of the 
previous ConvLSTM layer yt,k−1 ; (2) the extracted features 
from the encoder ft,k ; (3) the hidden state of the same Con-
vLSTM layer for the previous frame yt−1,k.

(1)hinput =
[
Conv

(
ft,k

)
|yt,k−1

]
,

(2)hstate = yt−1,k,

(3)yt,k = ConvLSTMk

(
hinput, hstate

)
.

In Eq. (3), hinput is the input of ConvLSTM, and hstate is 
the hidden state input of ConvLSTM. [Conv(ft,k)|yt,k−1] is 
the concatenation operation for matrix Conv(ft,k) and yt,k−1 . 
Conv(ft,k) is a convolutional layer for projecting the feature 
ft,k into a smaller dimension. For the first frame of an MCE 
sequence, hstate is a zero matrix, which means no prior infor-
mation is known.

Bi‑directional training

We noticed that the prediction results of the myocardium in 
MCE images is highly dependent on the image quality of 
the frame. Supplementary Fig. 1 (Online Resource 1) shows 
some sample frames of MCE of different chamber views. We 
can see that the image quality in the first frames is usually 
worse than that of the others. Consequently, the prediction 
error of these frames may propagate to the rest of the MCE 
sequences.

In order to alleviate this problem, we introduced a bi-
directional training approach. Specifically, after our model 
was trained from frame 1 to T  , we further trained the model 
from frame T  to 1, where T  is the total number of frames. 
Figure 3 presents the workflow of the proposed bi-direc-
tional training approach.

Perfusion quantification

According to the guideline of UEA by the American Soci-
ety of Echocardiography [2] and [21], time-intensity replen-
ishment curves showed in supplementary Fig. 3 (Online 
Resource 3) were generated and fitted to the following expo-
nential equation:

where Y  is the intensity of myocardium at time t  after the 
‘‘flash’’ impulse, A is the plateau myocardial contrast inten-
sity, and the slope of the replenishment curve depicts mean 
microbubble velocity � . The myocardial blood flow ( MBF ) 
can be described as:

(4)Y = A ×
(
1 − e−�t

)
,

Fig. 2  The flow and the process for 
importing data. MCE myocardial 
contrast echocardiography. *There 
are 3 chamber-view sequences per 
patient, and 30 frames per sequence

Training data for myocardial segmentation
N=70 patients, containing 210 MCE sequences (70 patients×3 

chamber-view sequences) and 6300 fames (210 sequences × 30 

frames)

Testing data for myocardial 
segmentation

N=30 patients, containing 90 MCE 

sequences (30 patients×3 chamber-

view sequences) and 2700 fames (90 

sequences × 30 frames)

A total of 100 patients who received MCE were selected
N=100 patients, containing 300 MCE sequences (100 patients×3 chamber-view sequences) and 9000 fames 

(300 sequences × 30 frames)* 
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Experiment setup

In this section, we evaluated the performance of our pro-
posed encoder-decoder architecture for the myocardial 
segmentation task using our collected MCE dataset. We 
implemented two versions of the proposed framework, (a) 
training with forward temporal information (denoted as 
U-net + f-ConvLSTM), (b) training with temporal informa-
tion from both directions (denoted as U-net + bi-ConvL-
STM). U-net was used as our baseline. U-net and ConvL-
STM were implemented using Pytorch based on [22] and 
[19], separately.

The MCE images were centrally cropped into 512 × 512. 
For data augmentation during training, we randomly scaled 
all images by [0.8, 1.2] and rotate them by [ −30◦

, 30
◦ ] 

respectively. We also shifted the image brightness, contrast, 
and saturation by [− 0.1, 0.1]. During testing, we did not 
employ any augmentations. For each iteration, a complete 
MCE sequence containing 30 frames of a subject was used 
for training. The batch size was set to 5, which meant in each 
iteration, 5 MCE sequences containing 150 frames were fed 
for training. This is the largest batch size in order to train 
our network on a single GPU. Our experimental results show 
that increasing the batch size to 10 and training the network 
on 2 GPUs does not improve the accuracy.

We trained our network for 30 epochs, and the learning 
rate for the encoder and decoder was set to 0.0001 for the 
first 15 epochs and 0.00001 for the rest. All the experiments 
run on an Nvidia GTX 1080Ti GPU with 11 GB memory.

Evaluation

Dice coefficient and Intersection over Union (IoU) were used 
to evaluate the segmentation performance of our framework, 
which were defined as:

(5)MBF = A × �.

in which P and T  refer to the prediction of our encoder-
decoder model and ground truth (manual annotation method) 
mask, respectively. n is the index of pixel space N . Haus-
dorff distance (HD) was also used for measuring the surface 
distance between prediction and ground truth boundaries.

An observation study was conducted to further show 
the segmentation improvement. An independent and expe-
rienced echocardiographer was asked to grade results of 
the testing frames. For each chamber view of each patient, 
we randomly selected 5 frames for grading, resulting in 
3 × 30 × 5 frames in total. A semi-quantitative scoring sys-
tem was defined based on the segmentation boundary on 
the output frame whose precision is classified into 4 levels: 
Level 4, very good; Level 3, with a little deviation; Level 2, 
existing unregulated shapes; Level 1, with severe disconnec-
tion and mistake. The visualization of segmentation results 
at each level can be seen in supplementary Fig. 4 (Online 
Resource 4).

Intra‑observer and inter‑observer variability

The variability of the annotation of myocardial ROI was 
assessed in 8 randomly selected frames, by comparing 
the parameters Dice, IoU, HD, A, β, and MBF. The intra-
observer variability was assessed in the same frames 
3 months apart by one echocardiographer. The inter-observer 
variability was assessed among the frames by two independ-
ent echocardiographers.

Statistical methods

Data were analyzed using R (http://www.R-proje ct.org) and 
Empower Stats software (http://www.empow er.stats .com, 

(6)Dice(P,T) = 2 ×

∑N

(n=1)

�
Pn × Tn

�

∑N

(n=1)

�
Pn + Tn

� ,

(7)IoU(P, T) =

∑N

n=1

�
Pn × Tn

�

∑N

n=1

�
Pn + Tn − Pn × Tn

� ,

Fig. 3  Illustration of our 
proposed bi-direction training 
approach. T refers to the total 
number of frames

http://www.R-project.org
http://www.empower.stats.com
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X&Y solutions, Inc., Boston, MA, USA). Kruskal–Wallis 
rank sum test was used to compare the Dice, IoU, HD, and 
scores by expert between three models, and if it achieved 
significant difference, multiple comparisons were carried 
out. Two-sided p values with p ≤ 0.05 were considered sta-
tistically significant.

The intraclass correlation coefficient (ICC) of a perfect 
correlation between two variables would equal to 1, and an 
ICC above 0.8 shows a very strong correlation and between 
0.6 and 0.8 a strong correlation [23].

Results

Dice coefficient, IoU, and HD

Table 1 shows the results of myocardial segmentation for 
A2C, A3C and A4C chamber views. We can notice that 
U-net + bi-ConvLSTM achieves the higher Dice coefficient, 
IoU, and lower HD in each chamber view when compared 
with U-net + f-ConvLSTM method and U-net. When the 
parameters of all the chamber views are summarized, their 
differences remain significant (Dice coefficient: 0.81 ± 0.07 
vs 0.79 ± 0.07 vs 0.78 ± 0.07, p < 0.01; IoU: 0.68 ± 0.09 vs 
0.66 ± 0.09 vs 0.65 ± 0.09, p < 0.01, HD: 27.59 ± 12.82 vs 
28.69 ± 13.18 vs 32.68 ± 14.61 pixels point, p < 0.01).

Observation study

As shown in Table 2, there was a statistical difference 
in the scores among the three models on A2C and A3C. 
When comparing U-net + bi-ConvLSTM with U-net and 
U-net + f-ConvLSTM, respectively, the statistical dif-
ferences remained significant. In terms of total score, 
U-net + bi-ConvLSTM was statistically higher than that 
of U-net + f-ConvLSTM and U-net (54.63 ± 4.72 vs 
52.50 ± 5.12 vs 50.80 ± 4.32, p < 0.01). However, when 
comparing U-net + f-ConvLSTM and U-net, no statistical 
differences were found.

Intra‑observer and inter‑observer variability

For intra-observer variability, the Dice, IoU, and HD of all 
chamber views were 0.87, 0.77, 11.65 pixels. The correlation 
coefficients of A, β, and MBF were 0.99 (95% CI 0.92 to 
1.00), 0.98 (95% CI 0.90 to 1.00), and 0.99 (95% CI 0.96 to 
1.00), respectively. For interobserver variability, Dice, IoU, 
and HD were 0.88, 0.78, 20.66 pixels, respectively. The cor-
relation coefficients of A, β, and MBF were 0.99 (95% CI 
0.94 to 1.00), 0.93 (95% CI 0.65 to 0.99), and 0.94 (95% CI 
0.67 to 0.99), respectively.

Table 1  Comparison of 
segmentation results of different 
models

Data are expressed as mean ± SD. Model 1: U-net; Model 2: U-net + f-ConvLSTM; Model 3: U-net + bi-
ConvLSTM. The U-net + f-ConvLSTM refers to training our model forwardly from frame 0 to frame 30 
while U-net + bi-ConvLSTM refers to training in bi-direction
“P value” represents the comparison among all the three models
A2C apical two-chamber; A3C apical three-chamber, A4C: apical four-chamber, HD hausdorff distance, 
IoU intersection over union
* Represents the comparison between Model 1 and Model 2
** Represents the comparison between Model 1 and Model 3
*** Represents the comparison between Model 2 and Model 3

Model 1 Model 2 Model 3 P value P value* P value** P value***

Dice
 A2C 0.80 ± 0.08 0.80 ± 0.08 0.81 ± 0.08  < 0.01 0.69  < 0.01  < 0.01
 A3C 0.75 ± 0.11 0.76 ± 0.12 0.78 ± 0.11  < 0.01 0.06  < 0.01  < 0.01
 A4C 0.80 ± 0.10 0.81 ± 0.09 0.82 ± 0.09  < 0.01  < 0.01  < 0.01  < 0.01
 Total 0.78 ± 0.07 0.79 ± 0.07 0.81 ± 0.07  < 0.01 0.01  < 0.01  < 0.01

IoU
 A2C 0.67 ± 0.10 0.67 ± 0.10 0.69 ± 0.10  < 0.01 0.65  < 0.01  < 0.01
 A3C 0.61 ± 0.13 0.62 ± 0.14 0.65 ± 0.13  < 0.01 0.01  < 0.01  < 0.01
 A4C 0.67 ± 0.12 0.69 ± 0.11 0.71 ± 0.12  < 0.01  < 0.01  < 0.01  < 0.01
 Total 0.65 ± 0.09 0.66 ± 0.09 0.68 ± 0.09  < 0.01  < 0.01  < 0.01  < 0.01

HD (pixel point)
 A2C 28.46 ± 20.36 26.98 ± 19.44 25.79 ± 19.94 0.02 0.25 0.01 0.41
 A3C 42.54 ± 27.90 34.90 ± 24.55 33.01 ± 24.17  < 0.01  < 0.01  < 0.01 0.26
 A4C 27.03 ± 18.92 24.19 ± 16.38 23.96 ± 17.73  < 0.01  < 0.01  < 0.01 0.97
 Total 32.68 ± 14.61 28.69 ± 13.18 27.59 ± 12.82  < 0.01  < 0.01  < 0.01 0.20
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Case report

Myocardial segmentation and perfusion parameter acquisi-
tion were performed on the end-systolic frames of a ran-
domly selected subject in A4C. The end-systolic frames 
of 8 consecutive cardiac cycles were manually chosen for 
segmentation. It took 0.8 s for our model to complete the 
whole segmentation of these frames. Figure 4 shows the 
visualization of segmentation results by U-net + bi-ConvL-
STM and the ground truth. It can be seen that our model can 
generate myocardial segmentation close to human annota-
tions. Figure 5 shows the time-intensity curve and perfusion 
parameters using the myocardial segmentation generated by 
U-net + bi-ConvLSTM and by the ground truth, respectively. 
The ICC of A, β, and MBF were 0.991 (95%CI 0.946 to 
0.998), 1 (0.999 to 1.000), and 0.999 (0.996 to 1.000). We 
can see that there is little difference between the perfusion 
parameters generated by using the myocardial segmenta-
tion of our model and that of the expert, suggesting that 
our proposed model has the potential to replace human in 
myocardial segmentation tasks.

Discussion

To summarize this work, we proposed a framework with 
temporal consistency for automatic myocardial segmenta-
tion. It can generate accurate myocardial segmentation and 
reduce the manual labor of creating and adjusting ROIs. The 
experimental results on our collected MCE dataset showed 
that by fusing bi-directional temporal information into con-
volutional neural network, we can improve the segmentation 
performance.

To assess the precision of our model, we evaluated the 
segmentation results from multiple aspects. In terms of seg-
mentation metrics, it is objectively proved that our model 
performs well on Dice, IoU, and HD. When compared with 

the other two baseline models on the observational level, the 
visual grading results show that there is no statistical differ-
ence in the scores of the three models on A4C. This might 
be because the fewer image artifacts on A4C (reducing the 
difficulty of boundary recognition) narrowed the difference 
among models’ predictions, which needs further research 
and confirmation. And in total score, the myocardial seg-
mentation contour generated by our framework is closest to 
that of experts’ expectation.

Methodology comparison with current software

Take Qlab of Philips as an example, it uses a single ROI 
created on any end-systolic frame in the MCE sequence to 
cover all end-systolic phase frames, assuming that the shape 
and position of the heart remain the same at the same phase. 
However, the structure of the myocardium changes over time 
in the real world, it is impossible to meet this situation per-
fectly. In contrast, ROI is generated for each frame by our 
framework, so the errors of segmentation and parameters 
caused by the variation of myocardial shape and position 
could be avoided. In a word, if the dynamic changes of the 
position of the myocardium are not considered, misjudgment 
and inaccuracy of myocardial segmentation may occur.

Related work

There are two approaches among existing works towards 
myocardium segmentation. The first approach is based on 
point distribution models (PDMs) [24]. A good example is 
the active shape model (ASM) [25] or active appearance 
model (AAM) [26]. The main idea of ASM is to learn pat-
terns of variability from a training set of correctly annotated 
images. ASM uses principal component analysis (PCA) to 
build a statistical shape model from a set of training shapes 
and then fits an image in a way that is most similar to the 

Table 2  Scores of different models on testing data for three chamber views

Data are expressed as mean ± SD. The score was obtained by adding the grades of 5 randomly selected frames of each subject. The full score of 
each frame and whole fames are 4 and 20, respectively
Model 1: U-net; Model 2: U-net + f-ConvLSTM; Model 3: U-net + bi-ConvLSTM
A2C apical two-chamber; A3C apical three-chamber, A4C apical four-chamber
* Represents the comparison between Model 1 and Model 2
** Represents the comparison between Model 1 and Model 3
*** Represents the comparison between Model 2 and Model 3

Model 1 Model 2 Model 3 P value P value* P value** P value***

A4C (n = 30) 17.93 ± 2.10 18.17 ± 1.76 18.33 ± 1.95 0.73 – – –
A2C (n = 30) 17.30 ± 1.84 17.60 ± 1.79 18.67 ± 1.45  < 0.01 0.77  < 0.01 0.05
A3C (n = 30) 15.60 ± 3.15 16.73 ± 3.39 17.63 ± 3.03 0.05 0.36 0.04 0.52
Total scores (n = 30) 50.80 ± 4.32 52.50 ± 5.12 54.63 ± 4.72  < 0.01 0.34  < 0.01 0.19
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Fig. 4  Visualization of myo-
cardial segmentation results of 
a randomly selected subject on 
A4C. The different colors in 
the output represent different 
segments of the myocardium. 
In the third column, the blue 
and green boundaries refer to 
the ground truth and prediction 
respectively. Each row refers 
to the frame at the end-systolic 
phase of consecutive cardiac 
cycles after “flash” impulse



The International Journal of Cardiovascular Imaging 

1 3

statistical shape in the training set [27]. Proposed a real-
time algorithm for myocardial and left ventricular segmen-
tation in three-dimensional (3D) cardiac ultrasound based 
on 3D ASM [28]. Coupled the advantages of ASM and 
B-spline explicit active surfaces framework and present a 
fast and automatic left ventricular segmentation and track-
ing framework [29]. Improved the performance of ASM in 
four-chamber contrast echocardiography by introducing a 
gradient vector flow field [30]. Pointed out the difficulty 
of manual landmarking in 3D Ultrasound images and pro-
posed simulated ultrasound to obtain the training set. The 
experiment results in vivo data demonstrated the feasibility 
of the approach. The prediction results of ASM must be 
constrained into certain shape variations so that the shape of 
the segmentation result does not go too far from the regular 
myocardium shape, which is very important when artifacts 
in the ultrasound image make the myocardium boundary 
unclear and hard to recognize. However, ASM is based on 
linear intensity information in the image, which is insuffi-
cient to model the appearance of MCE data with huge inten-
sity variations and large artifacts. Besides, ASM requires a 
manual initialization shape and the final segmentation result 
is very sensitive to the shape and position of this initializa-
tion. Thus, a fully automatic and non-linear model is needed.

The second approach adopts machine learning and deep 
learning techniques to perform image segmentation. For 
example [31], used fully convolutional networks for ana-
tomical structure detection and segmentation from ultra-
sound images. And [32] used structured random forest 
algorithm to segment myocardium and left ventricular on 
heterogeneous clinical data [33]. Proposed an ASM based 
random forest for myocardial segmentation in contrast echo-
cardiography. Although these above methods showed great 

improvements in the segmentation performance compared 
to ASM or AAM, they do not take into account the temporal 
consistency when treating each frame, which may lead to 
inaccurate segmentation results or the lack of coherence in 
some sequences.

Notice that work [34] dealt with the same problem and 
they used Shape Model guided Random Forests to seg-
ment myocardium in MCE images. They achieved a Dice of 
0.81 ± 0.10 on A4C chamber view at the end-systolic phase 
of their dataset. Despite the difference in dataset, our model 
also obtains a Dice of 0.822 ± 0.09 on the whole cardiac 
cycle.

Clinical perspective

The new framework of automatic myocardial segmentation 
has several potential clinical applications, such as improving 
the quantitative analysis workflow of myocardial perfusion, 
guiding inexperienced users to the expert-level myocardial 
segmentation with minimal effort and time. On the other 
hand, the new framework can make the widespread use of 
MCE possible.

Study limitations

This study of deep learning applied to MCE data has sev-
eral limitations. First, this study only performed rest MCE 
cross-verification with a limited number of patients in a sin-
gle center. A study containing a larger population in exter-
nal center should be performed. And a study to assess the 
efficacy of the deep learning algorithm in stress echocar-
diography is needed. Second, we did not do the backward 

Fig. 5  Measured perfusion parameters by U-net + bi-ConvLSTM against ground truth. a the plateau myocardial contrast intensity; β: mean 
microbubble velocity
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experiment, but we expected the performance would be 
between the forward model and the bi-directional model. 
Third, a diagnostic test is needed to verify the performance 
to identify myocardial ischemia by our framework. Forth, we 
can do the myocardial segmentation for any frame, but the 
end-systolic frames need to be extracted manually, because 
we have not developed a program to automatically identify 
them from the cardiac cycles. Fifth, the images in this study 
were only from Philips machines using SonoVue as UEA, 
so caution should be taken when applying this study to other 
ultrasound vendors and UEAs, due to different image qual-
ity. Besides, there was inter- or intra-observer variability that 
should be noticed.

Conclusions

In this study, we proposed an automatic myocardial seg-
mentation framework for MCE sequences. Experimental 
results on our collected MCE dataset showed that our pro-
posed framework can produce better myocardial segmenta-
tion compared to the baseline methods. Perfusion analysis 
demonstrated that the myocardial perfusion parameters gen-
erated by the myocardial segmentation of our model had a 
good correlation to the manual annotation by the experi-
enced echocardiographer.
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