
VisualNet: An End-to-End Human Visual
System Inspired Framework to Reduce Inference

Latency of Deep Neural Networks
Tianchen Wang , Student Member, IEEE, Jiawei Zhang, Jinjun Xiong ,Member, IEEE,

Song Bian ,Member, IEEE, Zheyu Yan , Meiping Huang, Jian Zhuang,

Takashi Sato ,Member, IEEE, Xiaowei Xu , and Yiyu Shi, Senior Member, IEEE

Abstract—Acceleration of deep neural network (DNN) inference has gained increasing attention recently with the wide adoption of

DNNs for practical applications. For computer vision tasks where inputs are images, existing works mostly focus on improving the

throughput of inference for multiple images. However, in many real-time applications, it is critical to reduce the latency of a single image

inference, which is more complicated than improving the throughput because of the inherent data dependencies. On the other hand,

from human brain’s perspective, the complexity in our visual surroundings is first encoded as a pattern of light on a two dimensional

array of photoreceptors, with little direct resemblance to the original input or the ultimate percept. Within just a few hundred microns of

retinal thickness, this initial signal encoded by our photoreceptors must be transformed into an adequate representation of the entire

visual scene. Inspired by how the retina helps human brain incept new information efficiently, we present an end-to-end structured

framework built using any existing convolutional neural network (CNN) as the backbone. The proposed framework, called VisualNet,

can create task parallelism for the backbone during the inference of a single image. Experiments using a number of neural networks for

the ImageNet classification task and the CIFAR-10 classification task on GPUs and CPUs show that the proposed VisualNet reduces

the latency of the regular network it builds on by up to 80.6% when both are fully parallelized with state-of-the-art acceleration libraries.

At the same time, VisualNet can achieve similar or slightly higher accuracy.

Index Terms—Biologically inspired, computer vision, neural network, human visual system

Ç

1 INTRODUCTION

IN pursuit of higher accuracy, state-of-the-art neural networks
(NNs) have become increasingly deeper, resulting in higher

computational complexity and longer inference latency [1]. In
contrast, many real-time applications, such as autonomous driv-
ing call for low inference latency while retaining accuracy [2],
[3]. Various techniques have been explored to address this chal-
lenge, such as network compression and quantization [4], light-
weight networks targeting resource-constrained platforms [5],

[6], dynamic computation graphs that provide efficient early
exits [7], and, on top of all the above techniques, net-
work parallelization [8], [9], [10].

A large body of works exists on NN parallelization, most
of which focus on improving the efficiency of the training
process [9], [11], and do not apply to network inference.
There are also a few works that explore parallelism [12] to
increase the number of images inferred per unit time, i.e., the
throughput, by distributing a batch of images to multiple
cores. None of these works, however, helps to reduce the sin-
gle-image inference latency, which is critical for real-time
applications. Existing techniques for reducing the latency of
single-image inference include operator parallelism [8], [9]
and model parallelism [10]. The former technique explores
concurrency in operators such as convolution, and the latter
distributes kernels of convolutional layers across multiple
cores. Due to the inherent data dependency of DNNs, these
approaches do not offer good scalability and usually cannot
fully utilize a large number of cores available in modern
high-performance computing platforms.

On the other hand, the huge success of DNNs largely
relies on its emulation of how human brain process infor-
mation [13]. Let us have a more detailed understanding of
how human visual system works. As shown in Fig. 1, the
first stage of processing an image in the brain starts with
projecting the two-dimensional scene on the retina layer
through the optical lens to perform the first stages of image
processing [14]. After the retina layer, which is made of

� Tianchen Wang, Zheyu Yan, and Yiyu Shi are with the University of Notre
Dame, NotreDame, IN 46556USA. E-mail: {twang9, zyan2, yshi4}@nd.edu.

� Jiawei Zhang, Meiping Huang, Jian Zhuang, and Xiaowei Xu are with
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080,
China. E-mail: 17110240008@fudan.edu.cn, huangmeiping@126.com,
zhuangjian5413@tom.com, xiao.wei.xu@foxmail.com.

� Jinjun Xiong is with the State University of New York at Buffalo, Buffalo,
NY 14260 USA. E-mail: jinjun@buffalo.edu.

� Song Bian and Takashi Sato are with Kyoto University, Kyoto 606-8501,
Japan. E-mail: sbian@easter.kuee.kyoto-u.ac.jp, takashi@i.kyoto-u.ac.jp.

Manuscript received 1 November 2021; revised 4 May 2022; accepted 23 June
2022. Date of publication 4 July 2022; date of current version 10 October
2022.
This work was supported in part by the National key Research and Develop-
ment Program of China under Grant 2018YFC1002600, in part by the Science
and Technology Planning Project of Guangdong Province, China under Grant
2018B090944002, and 2019B020230003, in part by Guangdong Peak Project
under Grants DFJH201802, and in part by the National Natural Science
Foundation of China under Grant 62006050.
(Corresponding author: Xiaowei Xu.)
Digital Object Identifier no. 10.1109/TC.2022.3188211

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 11, NOVEMBER 2022 2717

0018-9340 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 01,2022 at 03:11:06 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1524-6364
https://orcid.org/0000-0003-1524-6364
https://orcid.org/0000-0003-1524-6364
https://orcid.org/0000-0003-1524-6364
https://orcid.org/0000-0003-1524-6364
https://orcid.org/0000-0002-2620-4859
https://orcid.org/0000-0002-2620-4859
https://orcid.org/0000-0002-2620-4859
https://orcid.org/0000-0002-2620-4859
https://orcid.org/0000-0002-2620-4859
https://orcid.org/0000-0003-0467-6203
https://orcid.org/0000-0003-0467-6203
https://orcid.org/0000-0003-0467-6203
https://orcid.org/0000-0003-0467-6203
https://orcid.org/0000-0003-0467-6203
https://orcid.org/0000-0003-1830-606X
https://orcid.org/0000-0003-1830-606X
https://orcid.org/0000-0003-1830-606X
https://orcid.org/0000-0003-1830-606X
https://orcid.org/0000-0003-1830-606X
https://orcid.org/0000-0002-1577-8259
https://orcid.org/0000-0002-1577-8259
https://orcid.org/0000-0002-1577-8259
https://orcid.org/0000-0002-1577-8259
https://orcid.org/0000-0002-1577-8259
https://orcid.org/0000-0002-1046-6379
https://orcid.org/0000-0002-1046-6379
https://orcid.org/0000-0002-1046-6379
https://orcid.org/0000-0002-1046-6379
https://orcid.org/0000-0002-1046-6379
mailto:twang9@nd.edu
mailto:zyan2@nd.edu
mailto:yshi4@nd.edu
mailto:17110240008@fudan.edu.cn
mailto:huangmeiping@126.com
mailto:zhuangjian5413@tom.com
mailto:xiao.wei.xu@foxmail.com
mailto:jinjun@buffalo.edu
mailto:sbian@easter.kuee.kyoto-u.ac.jp
mailto:takashi@i.kyoto-u.ac.jp


both the sensory neurons that respond to light and intricate
neural circuits, the electrical message further travels down the
optical nerves towards the visual cortex (aka, the brain) in two
pathways as the geniculostriate pathway and the tectopulvinar
pathway, to which we call internal info path and spatial info
path, respectively. In the internal info path through the lateral
geniculate nucleus (LGN), the various internal information of
the image, such as motion, color, texture, and pattern, is
detected by the multiple layers within LGN (four magnocellu-
lar layers and two parvocellular layers), and the signals are
sent to the cortex thereafter. In the spatial info path through
the superior colliculus (SC), the signals provide the viewer
withmore information on objects’ absolute spatial information
but not sensitive to fine details [15], [16]. Moreover, the SC
receives the feedback signal resulting in eyemovement for fur-
ther visual details. A conception illustration of the above pro-
cess is shown in Fig. 2a.

Some recent approaches mimic the above details with
improved performance [17], [18], [19]. For example, Percept-
net [17] performed a series of perceptual operations in turn
simulating the retina-LGN-V1 cortex pathway. Inspired by
brain function, InterpoNet [18] investigated optical flow with
sparse-to-dense interpolation and lateral dependency regula-
tions. CNN-F [19] introduced a generative feedback with
latent variables to existing CNN architectures, where consis-
tent predictions are made through alternating maximum a

posteriori inference under a Bayesian framework. However,
all these methods just mimic parts of the overall system, but
not the whole picture. Thus, a natural question occurs to us: is
it possible to build a framework to mimic the structure and
function of the human visual system that leads to a more effi-
cient and faster approach to deal with visual tasks?

Inspired by the concept described above, we propose a
generic efficient framework, named VisualNet (shown in
Fig. 2b), that resembles the function of the human visual sys-
tem and reduce inference latency. The analogies of the retina
layer, the visual pathways, and the cortex in the visual sys-
tem are explicitly incorporated in our VisualNet. Specifically,
through a lightweight NN-based retina module, an input
image is decomposed and split into two feature representa-
tions with smaller sizes, which are forwarded to the internal
info path and spatial info path, respectively. The internal
info path is designed as the main feature extractor that
accounts for most of the computation, and we use a regular
NN as the backbone in the path. The spatial info path is
expected to generate the spatial feature guiding for more
information towards better prediction, where we use inde-
pendence and sparsity as the expected properties to regulate
the learning. An additional intrinsic connection between two
paths towards prediction accuracy is added as well. Then,
the two output features from the paths are forwarded to the
NN-based visual cortex module, where the features are
mixed to produce the inference results.

The additional advantage of VisualNet is that it can be
applied on top of all existing parallelization techniques to
enhance the scalability further and reduce the an NN’s infer-
ence latency.With the regulated independence in spatial info
path and the connection with internal info path, the internal
features can be processed in parallel by invoking multiple
backbone instances. Meanwhile, as input to the backbone, the
internal features are much smaller in dimension than the
original input image. Accordingly, latency reduction can be
achieved. Experimental results on ImageNet/CIFAR-10
classficiation tasks using various VisualNet-basedNNs show
that VisualNet provides up to 80.6% latency reduction while
achieving similar or slightly higher accuracy.

2 RELATED WORK

Various aspects targeting different levels of DNN inference
are devised to reduce the inference latency of DNNs. The
existing approaches can be classified into three large catego-
ries: 1). DNN structure, including novel components in

Fig. 1. Illustration of the human visual system which includes two paths,
with red solid lines as tectopulvinar path and green dash lines as genicu-
lostriate path, to pass the visual information to the higher visual cortex.

Fig. 2. Conceptual illustration of (a) the human visual system (drawn from the image [16]) and (b) VisualNet. Our VisualNet works in a similar manner
as the human visual system.
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DNN, novel DNN architecture search, and knowledge dis-
tillation; 2). DNN optimization, including computation
operator optimization, parameter factorization, network
pruning, and network quantization; 3). Hardware accelera-
tion, including acceleration on various platforms of CPU/
GPU/ASIC/FPGA, etc, and hardware level optimization
such as building lookup table, reusing computation, and
optimizing memory. In the rest of this section, we will go
through the first category and the interested readers are rec-
ommended to go to [20], [21] for more details of DNN opti-
mization and DNN hardware acceleration.

2.1 Efficient DNN Components

By designing an efficient DNN component, it means that by
replacing or appending to the component or layer in classi-
cal DNN, such as VGG [22] which is made by a sequence of
convolution-ReLU modules, the DNN can achieve higher
performance and/or lower inference latency. We briefly
describe the previously proposed efficient DNN compo-
nents in the following.

Batch normalization [23] is a technique for training DNN
that standardizes the inputs to a layer for each mini-batch of
input data. One of the difficulties of training DNN is the dis-
tribution of the inputs to layers deep in the network may
change after each mini-batch when the weights are updated,
which causes the optimizer to chase a moving target for-
ever. Batch normalization was introduced to address this
change of distribution, which is also called the internal
covariate shift. In modern DNNs, the batch normalization
layers are often appended after the convolution layer
(before or after the non-linear activation layer).

Separable convolution [24] mainly consists of two main
types: spatially separable convolutions, and depthwise sep-
arable convolutions. The spatially separable convolutions
refer to the ones that the convolutional kernels are decom-
posed into smaller kernels across their spatial axes, which
resulting in fewer multiplications. However, the biggest
limitation of the spatially separable convolutions is that
only a minority of kernels is spatially separable, and train-
ing a DNN with spatially separable convolutions would
limit the performance significantly. For depthwise separable
convolutions, the two operations, depthwise convolutions
and pointwise convolutions, are performed sequentially. In
depthwise operation, the convolution is applied to a single
channel at a time, which is different from the standard con-
volution in which the convolution is done for all the input
channels. In pointwise operation, the 1� 1 convolution
operation is applied for all the input channels, which is usu-
ally used as channel-wise alignment among the layers.

Inception block [25] was proposed as a way of reducing
computational expense. The most simplified version works
by performing a convolution on an input with not one, but
three different sizes of filters (1x1, 3x3, 5x5) as well as a
max pooling operation. Then, the resulting outputs are
concatenated and sent to the next layer. By structuring the
CNN to perform its convolutions on the same level, the net-
work gets progressively wider rather than deeper. An extra
1x1 convolution before 3x3 or 5x5 layers can be added as fur-
ther reducing the required computation. By doing so, the
number of input channels is limited and 1x1 convolutions are
far cheaper than 5x5 convolutions. It is important to note,

however, that the 1x1 convolution is added after the max-
pooling layer, rather than before.

Residual block [26] is a stack of layers set where the output
of a layer is taken and added to another layer deeper in the
block, which was introduced as part of the ResNet architec-
ture. The intuition is that it is easier to optimize the residual
mapping than to optimize the original, unreferenced map-
ping. Ideally, if the optimal case is an identity mapping, it
would be easier to force the residual to zero than to fit an
identity mapping by a stack of nonlinear layers. Accord-
ingly, the skip connections allow the network to learn the
identity mapping much easier.

MixConv [27] proposed a new mixed depthwise convolu-
tion (MixConv), which naturally mixes up multiple kernel
sizes in a single convolution. The module acts as a simple
drop-in replacement of vanilla depthwise convolution,
which improves the accuracy and efficiency.

2.2 Lightweight CNNs

As the computation of convolution layers is expensive
which limits the deployment of large CNNs with better
accuracies on mobile platforms, many studies proposed
new lightweight, mobile-friendly CNN structures/design
guidelines in various aspects.

MobileNet series (V1 [28] V2 [6] V3 [29]) is a lightweight
network family. Basically, MobileNet V1 proposed the
streamlined architecture that uses depth wise separable
convolutions, along with two global hyperparameters for
latency/accuracy trade-off. MobileNet V2 proposed linear
bottlenecks between the layers and the short connections
between the bottlenecks to boost the performance. Mobile-
Net V3 incorporated hardware-aware network architecture
search (NAS) to search for the structure of each block target-
ing the best performance.

MNASNet [30] proposed an automated mobile neural
architecture search approach, which explicitly incorporate
model latency into the main objective so that the search can
identify a model that achieves a good trade-off between
accuracy and latency.

ShuffleNet V1 [5] V2 [31] is another lightweight network
family. In ShuffleNet V1 two new operations, pointwise
group convolution and channel shuffle, are proposed to
greatly reduce computation cost while maintaining accu-
racy. ShuffleNet V2 further improved the architecture with
minor modifications such as introducing channel split oper-
ation and moving channel shuffle to the end before the con-
catenation in both units.

MobileViT [32] is a light-weight and general-purpose
vision transformer for mobile devices, which presents a dif-
ferent perspective for the global processing of information
with transformers. MobileViT block replaces local process-
ing in convolutions with global processing using transform-
ers. It allows MobileViT block to have CNN- and ViT-like
properties, which helps it learn better representations with
fewer parameters and simple training recipes.

2.3 Knowledge Distillation

The goal of knowledge distillation is to build and train a
DNN with simpler structure and less complexity from a
large model, meanwhile achieving the similar performance.
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Typically in knowledge distillation, a small student network
is optimized to imitate a large teacher network. The existing
studies mainly focus on perspectives of knowledge catego-
ries, training schemes, teacher-student architecture, and dis-
tillation algorithms.

Soft targets [33] was proposed for image classification
task for the response-based knowledge, which usually
refers to the neural response of the last output layer of the
teacher model. As stated in [33], the soft targets are the
probabilities that the input belongs to the classes, which
contain the informative dark knowledge from the teacher
model.

Online distillation strategies [34] were proposed as to
overcome the limitation of the offline, static distillation [33],
to further improve the performance of the student model,
especially when a large-capacity high performance teacher
model is not available. In online distillation, both models
(teacher and student) are updated at the same time, and the
whole framework is end-to-end trainable.

In this work, we will explore a method that extracts inde-
pendent features from an input image, which creates task
parallelism with little data dependency. Since task parallel-
ism is orthogonal to operator or model parallelism, the pro-
posed method can be combined with the existing techniques
further to reduce the inference latency of a single image.

3 VISUALNET

3.1 Intuition

We start with the intuition of VisualNet. As illustrated in
Section 1 about the human visual system, after the retina
layer (in human eyes) there are two pathways connected to
it for further processing. The spatial info path through SC is
used for extracting the absolute spatial information with
less detail, where the SC also guides the eye movement for
further information. The internal info path through LGN
with multiple layers focuses more information such as
motion, texture, color, etc. The signals from two pathways
intersect at the visual cortex in the human brain for the final
decision.

With the modules’ functions and structures of the human
visual system illustrated above, we have an interpretation of
the visual system which could be connected to NN learning.

Specifically, the retina module could be considered the ini-
tial information processing module to extract the low-level
features for two pathways, where the two output features
serve different purposes. The features for the spatial info
path are more related to spatial information of the input
image whose property we would like to enforce, which
could be achieved by a lightweight NN with additional reg-
ulations. The features for the internal info path are more
related to learning tasks and could be further fine-tuned
through an NN backbone. As in the human visual system,
the signals after spatial info path are for pursuing further
information resulting in a better decision, thus in our
design, the features extracted after the spatial path are
expected to be high-level with the properties of indepen-
dence and sparsity as proper guidance. On the other hand,
we would like to build the intrinsic connection between the
spatial and internal info paths, which could be achieved by
enforcing reconstruction accuracy. With the enforcement of
independence, sparsity, and reconstruction accuracy added,
the features after spatial/internal info paths are then for-
warded to the visual cortex, where the final output for vari-
ous tasks can be obtained.

3.2 Architecture and Analysis

Based on the intuition above, we propose VisualNet to
resemble the functions of the human visual system with the
illustration shown in Fig. 3a. Our VisualNet comprises four
modules: the retina module, the spatial path, the internal
path, and the visual cortex module.

3.2.1 Structure of VisualNet

For the retina module, since it is designed as a lightweight
NN to extract the initial representation and output two sep-
arate features for further processing, we construct it with
two inverted residual cells (IRC) [6] (with two downsam-
plings) and a channel-wise split at the end of the module.
IRC is adopted when constructing the retina layer is because
compared with the normal residual block, IRC has a faster
inference without compromising accuracy, which aligns
with the need of retina layer of fast feature extraction. The
two output features are forwarded to the internal info path
and spatial info path, respectively.

Fig. 3. (a) The illustration of VisualNet architecture. IRC(c, t, n, s) denotes the inverted residual cell with output channel c, expansion factor t, repeat
times n, and stride s. k denotes the number of classes for classification. conv3/1(c) denotes the convolution cell (conv+bn+relu) with the kernel size
3x3/1x1 with output channel c and MP is size 2 max-pooling. m is the number of independent instances. (b) The structure of IRC. (c) The illustration
of parallel propagation task parallelism by invoking multiple instances of the VisualNet backbone. The

L
denotes the concatenation operation.
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In VisualNet, the spatial info path is designed to further
extract the high-level spatial features after the retina layer,
that we adopt three IRCs to construct the path (with three
downsamplings). We denote the output feature of spatial
info path as spatial feature S, which is then forwarded to the
visual cortexmodule for further regulations and processing.

Since the internal info path is more task-specific which
serves as extensive learning for representation extraction,
we design the internal info path in VisualNet as the main
learner in the framework. In other words, we apply a regu-
lar NN as the backbone of VisualNet in the internal info
path along with an IRC cell before the backbone to align the
dimension. We denote the input and the output of the back-
bone as the internal feature A and the learned internal fea-
ture A0 respectively, and both are forwarded to the visual
cortex module. Note that by using a regular network as Vis-
ualNet backbone, we only take the stacked convolutional
cells (such as conv2 to conv5 layers in ResNets) since they
act as the main feature extractor and account for the major-
ity of the computation/latency. We use V-{backbone name}
to denote the name of the framework implemented with the
specific backbone.

After A, A0 and S are obtained from the two paths, we
design the visual cortex to proceed with two sub-tasks: 1).
regulating A and S towards the properties of independence,
sparsity, and accuracy; 2). mixing A0 and S as the mixed fea-
ture and propagating it to get the prediction for the specific
task. For the first sub-task, the mixing of S and the learned
application-specific internal feature A0 is achieved by the
transposed convolution between the two features. The mix-
ing operation could be interpreted as decoding the learned
feature A0 by S. Then the decoded mixed feature is propa-
gated through the task-specific module. For classification,
the features go through a sequence of convolutional cells
(conv3+max-pooling). For object detection, the features go
through two convolutional cells without downsampling
and then propagate into the detection head (such as Faster
R-CNN [35] or SSD [36]).

For the second sub-task, we use three loss terms to regu-
late the learning. The first term measures independence
among the extracted spatial feature S, where we adopt the
approximation of negentropy due to its robustness and sim-
ple computation [37]. The second term is to guide the spar-
sity of the spatial feature S. The third term computes the
reconstruction error between the mixing (reconstruction)
result and the input image,which ideally should be identical.
Mathematically, the loss function of the additional regula-
tion for S andAwith the three loss terms can be expressed as

Lreg ¼ �iJðSÞ þ �sgðSÞ þ �r k A� S� Xin k22; (1)

where �i, �s and �r are the coefficients of the three loss
terms which are all set to 1.0 in our experiments; � is a
transposed convolution operation, i.e., the data is recon-
structed as A� S so that the dimension of the mixing results
matches that of the input data; gð�Þ denotes the sparsity loss
where L1 loss is adapted; Jð�Þ denotes the independence
loss (approximation of negentropy to measure nongaussian-
ity [38]), which can be computed as

JðSÞ ¼ avgð�0:75log coshðS=aÞÞ; (2)

where avgð�Þ denotes element-wise average of an entire
tensor.

With all modules and regulations proposed above, we
can achieve end-to-end training by combining the loss
obtained from Equation (1) with the target task’s loss func-
tion. Specifically, the loss function L can be expressed as

L ¼ Ltarget þ �eLreg; (3)

where Ltarget is the loss function defined by the target task
(such as image classification error or object detection error),
which we denote as target loss; �e is the loss weight of the
additional regulations, which is set to 0.1 in our experiments.

3.2.2 Acceleration Analysis

Compared with a regular NN, VisualNet constructed using
it as backbones can achieve lower latency, mainly because
the mixing tensors are drastically smaller in size than the
original image and thus can be handled much faster. As con-
structed in VisualNet, the internal info path is related to the
learning task and the spatial info is enforced to be indepen-
dent, which allows us to explore task parallelism. In other
words, we treat the internal feature A as independent tasks
corresponding to independent spatial feature S. Thus the
internal feature in the VisualNet backbone can be treated as
independent batches and handled in parallel (i.e., new task
parallelism) by invoking multiple instances of the backbone
network, as shown in Fig. 3c. Note that the processing of
each internal feature can still utilize any existing paralleliza-
tion techniques by applying them to the backbone.

3.3 The Connection Between VisualNet and Regular
Neural Network

The VisualNet architecture seems to be built on intuitions so
far. In this section, we will establish a theorem that explains
the underlying connection between a regular neural net-
work and VisualNet with it as the backbone. We will show
that using a regular neural network to learn the transform
of the mixing tensors only for the target application, with
bases unchanged, can indeed yield an accuracy comparable
with that of the regular neural network.

Theorem. Denote a regular neural network with input Xin

and output Xout ¼ fðXinÞ. In the ideal scenario that the
Visual-encoder/decoder are lossless (i.e., the transposed
convolution results in a perfect reconstruction Xin ¼ Ain � S),
under first order approximation Xout can be expressed as
Xout ¼ Aout � S, where Aout only depends on the network f
and themixing tensors Ain.

Proof. Proof by construction. Since the transposed convolu-
tion is a completely linear operation, with the assumption
that the Visual-encoder/decoder are lossless, each ele-
ment (pixel) P in X can be reconstructed as

Pi ¼ Ai;1S1 þAi;2S2 þ � � � þAi;mSm; (4)

where Sq (1 � q � m) are the realization of the ith basis
tensors Si put in a vector form, and Ai;q (1 � q � m) are
the corresponding mixing vectors that can be obtained
from the mixing tensors A. Here we call the data in the
form of Equation (4) as canonical form.
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Any neural network can be viewed as a function that
operates on the elements (pixels) in the input image,
through operations such as scaling, sum, max, etc. When
the input elements are in the canonical forms, we note
that these operations can be done with first-order
moments (w.r.t. the independent basis) preserved, as
detailed below. Specifically, given any pair of dataDi, Dj

in the form as shown in (4), their scaling Dscale, sum Dsum

and maxDmax are respectively shown as

Dscale ¼ w�Di ¼
Xm

q¼1

Ascale;qXq; (5)

Dsum ¼ sumðDi;DjÞ ¼
Xm

q¼1

Asum;qXq; (6)

Dmax ¼ maxðDi;DjÞ ¼
Xm

q¼1

Amax;qXq; (7)

where w is the scaling ratio.
The key of the above operations is that the results are

put back into the same canonical form as shown in Equa-
tion (4), which allows the same operations to be carried
out repeatedly throughout the entire network during for-
ward propagation. The mixing vectors (Ascale;q, Asum;q, and
Amax;q) are obtained by

Ascale;q ¼ w�Ai;q; (8)

Asum;q ¼ Ai;q þAj;q; (9)

Amax;q ¼ FðbÞAi;q þFð�bÞAj;q;

b ¼ ðmPi
� mPj

Þ=ðs2
Pi
þ s2

Pj
� 2sPisPjÞ1=2; (10)

where Fð�Þ is the Cumulative Distribution Function
(CDF) of a standardized normal distribution; mPi

, mPj
and s2

Pi
; s2

Pj
are the mean values and variances of Pi and

Pj, respectively, which can be calculated as

mP ¼ 1

m

Xm

i¼1

Ai; sP ¼ 1

m

Xm

i¼1

ðAi � mP Þ2: (11)

The results of scaling and sum are self-evident, while
that of the max operation is based on [39] which proves
that the first-order moments are preserved. As such, we
can propagate the mixing vectors in the canonical forms
all the way to the output and pack them back in the ten-
sor form as Aout; as S always remain the same throughout
the propagation, Xout ¼ Aout � S. tu
A closer look at the proof above reveals that the nonlin-

ear operations in a neural network, such as max, cause the
computation to be coupled basis-wise. Specifically, comput-
ing the basis coefficient of the max output requires calculat-
ing the means (Pi;m; Pj;m) and variances (s2

Pi
; s2

Pj
) of both

inputs first, which involve mixing tensors of all the basis
tensors in the two input canonical forms. If we further relax
these nonlinear operations to be basis-wise, e.g.,

Pmax, new ¼
Xm

q¼1

Amax;qSq ¼
Xm

q¼1

maxðAi;q; Aj;qÞSq; (12)

then we can fully decouple the propagation of the mixing
vectors for different Si and allow them to be done in parallel.

If we pack these mixing vectors in the tensor form, then this
is exactly the approach of the VisualNet, which allows the
mixing tensors of each basis to be handled through an
instance of the regular neural network backbone in training
and inference.

The above discussion demonstrates the relationship
between VisualNet and its regular network backbone and
supports the intuitive approach’s feasibility.

4 RESULTS

In this section, we first present the ablation studies demon-
strating the efficacy of various modules in VisualNet. We
then evaluate how the proposed VisualNet reduces the infer-
ence latency of various NNs in image classification task by
using these NNs as backbones. We further show the visuali-
zation of the two paths in the VisualNet process. Lastly, we
evaluate VisualNet with object detection task. Note that Vis-
ualNet is not a new NN architecture but rather a technique
that resembles the functions of the human visual system to
reduce the inference latency of existing CNNs.

4.1 Experimental Setup

The main focus of VisualNet is to decompose existing CNN
architectures for the acceleration of single-image inference
via task parallelism, rather than accuracy improvement. As
such, the goal of VisualNet is not to beat the accuracy or
latency of the state-of-the-art which mostly comes from neu-
ral architecture search [40] for dedicated task/dataset.
Instead, we chose to demonstrate its potential to reduce the
inference latency of some of the most widely used NN
architectures, including two lightweight networks ResNet18
(V-ResNet18), MobileNet v2 (V-MobileNet), and three large
networks ResNet50 (V-ResNet50), VGG16 (V-VGG16), and
DenseNet121 (V-DenseNet121).

We used PyTorch to implement all models and evaluate
them on both GPUs and CPUs. For GPUs, we used a cluster
of Nvidia P100. For CPUs, we used Intel Xeon multi-core
processors (48 cores with 256 G memory), similar to those
used in many real-time deep learning applications [41], [42].
As discussed earlier, VisualNet provides task parallelism,
which can be combined with existing operator and model
parallelism techniques that accelerate single image infer-
ence. To demonstrate this, we used the state-of-the-art Intel
MKL-DNN1 for CPU and CUDA/cuDNN for GPU to fully
accelerate all the networks, including VisualNets and the
NNs they build on (regular network counterparts).

The training configurations such as learning rate schedule,
weight initialization/decay, optimizer, and input dimension
follow corresponding regular networks’ approaches. All
modules in the models are trained from scratch. We evalu-
ated the effect of the independent instance number in Sec-
tion 4.3.3, and it was shown that a larger one leads to higher
accuracy. Therefore, unless otherwise specified,m is set to 24
for all the VisualNets.

Although VisualNet can reduce the latency in both train-
ing and inference, in the experiments we focus on the latter.
This is because in training the computation resources can
always be fully utilized through instance parallelism (i.e.,

1. https://github.com/intel/mkl-dnn
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processing multiple input images in parallel), and reducing
the latency of a single image is not important. For real-time
inference, however, the latency of a single image is critical.

4.2 Ablation Studies

We performed ablation studies to investigate the effects of
different body parts of VisualNet on the CIFAR-10 classifi-
cation task. Note that the structure of the VisualNet is
adjusted to fit CIFAR-10. We remove two downsampling
modules (one in the retina layer and one in the spatial info
path), and for the visual cortex, we remove the third convo-
lutional modules (conv3(1280)+MP) and let k ¼ 10. The
results are shown in Table 1.

4.2.1 Effects of VisualNet Backbone

We conducted experiments to study the effect of VisualNet
backbones built with regular NNs to learn the transformation
of the internal feature A for target applications. V-ResNet50
and V-VGG16 achieve a Top-1 accuracy of 93.9% and 93.1%
on CIFAR-10, respectively. We then replaced the VisualNet
backbones shown in Fig. 3 with an adaptive average pooling
operation, and with the same settings of hyperparameters
and optimizer, the accuracy drops to 86.4%, showing signs of
underfitting. This convincingly shows that VisualNet back-
bones play critical roles in learning the transform effectively
by increasing themodel’s representation power.

4.2.2 Effects of Visual Cortex

We conducted experiments to study the effect of the visual
cortex module which performs feature mixing and regula-
tion on the outputs from the previous two paths, and pro-
ducing the output. We experiment with V-ResNet50 and
replace the lightweight NN (convolution cells) in the visual
cortex with an average pooling operation and a linear classi-
fier. The test accuracy drops to 91.7%, which is 2.2% lower
than the one with the visual cortex. This shows that feature
fusion with the lightweight NN impacts accuracy and is
necessary to the visual cortex design.

4.2.3 Effects of Loss Terms

In Equation (1), the regulation losses (independence, sparsity,
accuracy) are introduced to regulate the training process,

with four hyperparameters �i, �s, �r, and �e. These parame-
ters for losses calculation will only affect the accuracy but not
the latency and throughputs. We conducted experiments
with V-ResNet50 to investigate their effects on accuracy. Spe-
cifically, we verified the following cases: (i.) without the inde-
pendence loss (�i ¼ 0); (ii.) without the sparsity loss (�s ¼ 0);
(iii.) without the reconstruction loss (�r ¼ 0); and (iv.) without
all the regulation losses (�e ¼ 0). The validation accuracies for
these four cases are 93.0%, 90.9%, 92.2%, and 91.4%, respec-
tively. These convincingly show that the regulation losses are
necessary for better performance, and the sparsity loss mat-
ters themost among all the loss terms.

4.3 Image Classification

We conducted the experiments on image classification with
the ILSVRC2012 ImageNet classification dataset [43], and
our VisualNet is constructed following Fig. 3a. We use Top-1
accuracy to evaluate the center crop (2562 � 3) from the
images (2922 � 3) in the validation set. Note that the regular
networks are trained and evaluated with the new dimension
(2562 � 3) rather than the conventional dimension (2242 � 3).

4.3.1 Accuracy

The Top-1 classification accuracies of VisualNets and their
regular network counterparts on ImageNet are shown in
the first data column of Table 2. It can be noticed that except
for V-VGG16 which has a 0.4% lower accuracy than the reg-
ular VGG16, all other VisualNets achieve higher accuracies,
ranging from 0.2% to 0.8%, than their regular network coun-
terparts. The slightly increased accuracy comes from the fact
that VisualNet can learn the feature from the input with its
special structures more effectively.

4.3.2 Latency

Before we look at the latency, the FLOP count (FLOPs) and
the parameter size (#params) of each model are reported in
the rightmost two columns in Table 2. The smaller input
size of the backbone reduces the amount of computation of
VisualNets, leading to a smaller total FLOP count than their
regular network counterparts. On the other hand, the differ-
ence in parameter sizes between VisualNets and regular
networks is caused by two reasons: (i.) the additional
parameters brought by the retina module, spatial path, and
visual cortex module, (ii.) VisualNet only takes stacked con-
volutional cells in the regular networks as its backbone. For
example, the conv1 layer in ResNets and the multiple fully
connected layers in VGG16 are not included. For VGG16,
the fully connected layers account for the overwhelming
majority of the parameters (3 layers take up 123.7 M out of
the total 138.4 M parameters) and they are used for final
dimension reduction and classification.

The latency of these networks on GPUs and CPUs is
shown in the second and third data columns in Table 2,
where both VisualNets and their regular network counter-
parts are fully parallelized. When implementing VisualNets
on GPUs, the latency can be reduced by up to 57.7%. On
CPUs, the latency can be reduced by up to 80.6%. From the
data, we can see that as the total FLOP count in the regular
network gets larger, the latency speedup becomes more sig-
nificant. This is because the overhead induced by the extra

TABLE 1
Ablation Studies of VisualNet Using Top-1 Accuracy (%) on

CIFAR-10 Classification

Discussion item Configuration Acc. (%)

Backbone
ResNet50 93.9
VGG16 93.1

Adaptive average pooling 86.4

Visual cortex
w/ visual cortex 93.9
w/o visual cortex 91.7

Loss term

w/ all regulation losses 93.9
w/o independence loss 93.0

w/o sparse loss 90.9
w/o reconstruction loss 92.2
w/o all regulation losses 91.4
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modules in VisualNets becomes less significant than the
benefit of task parallelism brought by design. Even for the
compact MobileNet, V-MobileNet can reduce its latency by
10.4% and 14.4% on GPUs and CPUs.

4.3.3 Effect of the Number of Independent Instances

We further study the effect of number of independent on the
accuracy of VisualNet (it has little impact on latency since the
corresponding mixing tensors are handled in parallel). We
use the same tasks and the same networks used above. The
results are shown in Table 3. From the table we can see that
larger number of independent instances leads to higher accu-
racy. This is because with larger basis dimension, more useful
features can be extracted by both internal info path and spatial
info path, and learned by the following backbone. The results
of backbone networks ResNet18 and ResNet50 with two dif-
ferent attention modules [44], [45] are also included for refer-
ence. We can see that without implementing module-level
modification on backbone network, our VisualNets still are
on parwith the state-of-the-art attentionmodels.

4.3.4 Robustness of VisualNet

We conducted the experiments to study the effect of noisy
input for VisualNet, where the additional regulations are

added towards independence, sparsity, and accuracy. We
use the classification task with ImageNet as an example to
prove the robustness of our VisualNets for noisy input.
Both VisualNets and the regular networks are trained with
the original images without noise and validated with the
noise added images. The noise for each image is randomly
selected from the Gaussian/Laplace/Poisson noises, with a
random scale between 0.01 and 0.1 per channel. The valida-
tion with noisy input is performed 5 times, and the results
with deviation are shown in Table 2. Compared with the
regular network counterparts, our VisualNets are much less
affected by the noisy input images and achieved up to 5.4%
higher accuracy than the regular counterparts.

4.3.5 Visualization of VisualNet Process

We use some images from ImageNet as examples to visual-
ize the process in the V-ResNet50 network. Some of the cor-
responding spatial features (S), internal features (A) and the
mixed features between the learned internal feature and
spatial feature (A0 � S) are illustrated in Fig. 4. We can see
that the mixing features (A0 � S) indeed contain spatial
information, which justifies using regular CNNs as back-
bones to transform them for target applications.

4.4 Object Detection

We evaluate the performance of VisualNets on object detec-
tion task. Based on MMDetection deteciton framework, we
adopt two configurations: Faster R-CNN [35] with ResNet50
and SSD300 [36] with VGG16 [22] for evaluation. We only
use GPUs for evaluation since the CPU inference is not sup-
ported by the framework. The models are trained based on
the union of VOC 2007 trainval and VOC 2012 trainval (“07
+12”) tested on VOC 2007 testset.

The object detection accuracy (mAP@0.5), the latency and
the total FLOP count of the VisualNets and their regular net-
work counterparts are shown in Table 4. The table shows
that VisualNets can achieve a similar accuracy compared
with the regular network counterpart, with 0.4% higher in
Faster R-CNN+ResNet50 and 0.6% lower in SSD300
+VGG16. Meanwhile, due to reduced computation needed
for VisualNets, the latency and the total FLOP count for

TABLE 2
Top-1 Accuracy (%) Without and With Element-Wise Noise Added, Latency on GPU/CPU, Total FLOP Count,

and Parameter Size of VisualNets and Their Regular Network Counterparts on ImageNet Classification

Networks w/o noise w/ noise Latency (ms) FLOPs (G) #params (M)
Acc. (%) Acc. (%) GPU CPU

MobileNet 71.2 63.4�0.09 11.5 31.9 0.39 3.50
V-MobileNet 71.4 68.8�0.07 10.3(-10.4%) 27.3(-14.4%) 0.11 3.77

DenseNet121 75.2 72.3�0.12 24.4 87.7 3.70 7.98
V-DenseNet121 75.8 73.1�0.11 20.9(-14.3%) 56.4(-35.7%) 0.97 8.48

ResNet18 69.6 62.9�0.10 5.6 45.6 2.37 11.69
V-ResNet18 70.4 66.3�0.05 5.2(-7.1%) 31.5(-30.9%) 0.64 12.67

ResNet50 76.8 69.9�0.08 10.6 92.3 5.34 25.56
V-ResNet50 77.2 73.7�0.10 9.1(-14.2%) 46.2(-49.9%) 1.38 25.10

VGG16 70.5 64.3�0.08 13.7 156.0 20.17 138.37
V-VGG16 70.1 66.3�0.06 5.8(-57.7%) 30.3(-80.6%) 1.33 16.23

For latency, all the networks are fully parallelized using state-of-the-art acceleration libraries as described in Section 4.1.

TABLE 3
Comparison of Top-1 Accuracy (%) on ImageNet Classification
Between ResNet18 (R18), ResNet50 (R50), DenseNet121

(D121), and VGG16 (V16) and Their VisualNets
Implementations

Networks R18 R50 D121 V16

Regular 69.6 76.8 75.2 70.5
Regular+SE [44] 70.6 76.9 - -
Regular+CBAM [45] 70.7 77.3 - -
VisualNets (m ¼ 8) 69.7 75.7 71.6 66.4
VisualNets (m ¼ 16) 69.9 76.9 74.4 68.9
VisualNets (m ¼ 24) 70.4 77.2 75.8 70.1

For each VisualNet three different number of independent instances are set as
m ¼ 8; 16; 24. The modifications based on attention modules, squeeze-and-
excitation (SE) [44] and convolutional block attention (CBAM) [45], are also
included for reference.
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both detection frameworks are reduced. For SSD300+VGG16,
VisualNet can reduce the latency by 20.4%. It achieves
less significant speedup on Faster R-CNN+ResNet50 due

to the heavy detection head in Faster R-CNN, which is not
part of the backbone and thus cannot be accelerated by
VisualNet.

Fig. 4. Visualization of the spatial feature (S), the internal feature (A), and the mixed features between the learned internal feature A0 and the spatial
feature S (A0 � S) for some example input images (Xin). Note that for each image only some of the features are shown. They are of different sizes
and are scaled differently for compact display.

TABLE 4
The mAP@0.5 (%), Latency on GPU, Total FLOP Count, and Parameter Size of VisualNets

and Their Regular Network Counterparts on PASCALVOC 2007 Object Detection

Configuration Network mAP@0.5 (%) Latency(ms) FLOPs(G) #params (M)

Faster R-CNN+ResNet50 Regular 74.1 73.5 31.63 41.53
VisualNet 74.5 69.8 27.65 42.47

SSD300+VGG16 Regular 77.2 38.8 34.42 34.31
VisualNet 76.6 30.9 15.51 35.26

For latency, all the networks are fully parallelized using state-of-the-art acceleration libraries as described in Section 4.1.
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5 CONCLUSION

In this work, we propose a general framework (VisualNet)
that mimics the human visual system’s function and struc-
ture, leading to an enhancement of the scalability and reduc-
tion of the single image inference latency in existing CNNs.
Specifically, through a lightweight retina layer, an input
image is decomposed and split into two for spatial and inter-
nal info paths, respectively. The spatial feature is obtained
after the spatial path, and the internal feature can be trans-
formed through learning for different target applications,
such as image classification and object detection using a reg-
ular NN as the backbone. The spatial feature in the visual
cortex decodes the learned internal feature to get the infer-
ence results. Experimental results on ImageNet classification
and CIFAR-10 classification using various NNs show that
VisualNet provides up to 80.6% latency reduction while
achieving similar or slightly higher accuracy.

REFERENCES

[1] X. Xu et al., “Scaling for edge inference of deep neural networks,”
Nature Electron., vol. 1, no. 4, pp. 216–222, 2018.

[2] K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. H. C. de
Albuquerque, “Deep learning for safe autonomous driving: Cur-
rent challenges and future directions,” IEEE Trans. Intell. Transp.
Syst., vol. 22, no. 7, pp. 4316–4336, Jul. 2021.

[3] T. Wang, J. Xiong, X. Xu, and Y. Shi, “SCNN: A general distribu-
tion based statistical convolutional neural network with applica-
tion to video object detection,” in Proc. AAAI Conf. Artif. Intell.,
2019, pp. 5321–5328.

[4] Y. Choi, M. El-Khamy, and J. Lee, “Universal deep neural network
compression,” 2018, arXiv:1802.02271.

[5] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6848–6856.

[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[7] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing
accuracy-efficiency trade-offs by selective execution,” in Proc.
32nd AAAI Conf. Artif. Intell., 2018, pp. 3675–3682.

[8] U. A. Muller and A. Gunzinger, “Neural net simulation on parallel
computers,” inProc. IEEE Int. Conf. Neural Netw., 1994, pp. 3961–3966.

[9] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N.
Andrew, “Deep learning with COTS HPC systems,” in Proc. Int.
Conf. Mach. Learn., 2013, pp. 1337–1345.

[10] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distrib-
uted deep learning: An in-depth concurrency analysis,” 2018,
arXiv:1802.09941.

[11] Y. Zhu et al., “Statistical training for neuromorphic computing using
memristor-based crossbars considering process variations and noise,”
inProc. Des. Automat. Test Europe Conf. Exhib., 2020, pp. 1590–1593.

[12] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware dis-
tributed parameter servers,” in Proc. ACM Int. Conf. Manage. Data,
2017, pp. 463–478.

[13] N. Kriegeskorte, “Deep neural networks: A new framework for
modeling biological vision and brain information processing,”
Annu. Rev. Vis. Sci., vol. 1, pp. 417–446, 2015.

[14] H. Kolb, “How the retina works: Much of the construction of an
image takes place in the retina itself through the use of specialized
neural circuits,” Amer. Scientist, vol. 91, no. 1, pp. 28–35, 2003.

[15] M. T. Banich and R. J. Compton, Cognitive Neuroscience, Cam-
bridge, U.K.: Cambridge Univ. Press, 2018.

[16] B. Kolb, I. Q. Whishaw, and G. C. Teskey, An Introduction to Brain
and Behavior, New York, NY, USA: Worth, 2001.

[17] A. Hepburn, V. Laparra, J. Malo, R. McConville, and R. Santos-
Rodriguez, “Perceptnet: A human visual system inspired neural
network for estimating perceptual distance,” in Proc. IEEE Int.
Conf. Image Process., 2020, pp. 121–125.

[18] S. Zweig and L. Wolf, “InterpoNet, a brain inspired neural net-
work for optical flow dense interpolation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 4563–4572.

[19] Y.Huang et al., “Neural networkswith recurrent generative feedback,”
inProc. 34th Int. Conf. Neural Inf. Process. Syst., 2020,Art. no. 46.

[20] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating
CNN inference on FPGAs: A survey,” 2018, arXiv:1806.01683.

[21] R. Reed, “Pruning algorithms-a survey,” IEEE Trans. Neural Netw.,
vol. 4, no. 5, pp. 740–747, Sep. 1993.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167.

[24] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 1800–1807.

[25] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[27] M. Tan and Q. V. Le, “MixConv: Mixed depthwise convolutional
kernels,” 2019, arXiv:1907.09595.

[28] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

[29] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2019, pp. 1314–1324.

[30] M. Tan et al., “MnasNet: Platform-aware neural architecture
search for mobile,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 2820–2828.

[31] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practi-
cal guidelines for efficient CNN architecture design,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 116–131.

[32] S. Mehta and M. Rastegari, “MobileViT: Light-weight, general-pur-
pose, andmobile-friendly vision transformer,” 2021, arXiv:2110.02178.

[33] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” 2015, arXiv:1503.02531.

[34] D. Chen, J.-P. Mei, C. Wang, Y. Feng, and C. Chen, “Online knowl-
edge distillation with diverse peers,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 3430–3437.

[35] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 91–99.

[36] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 21–37.

[37] A. Hyvarinen, “Fast and robust fixed-point algorithms for inde-
pendent component analysis,” IEEE Trans. Neural Netw., vol. 10,
no. 3, pp. 626–634, May 1999.

[38] A. Hyv€arinen, J. Karhunen, and E. Oja, Independent Component
Analysis, vol. 46, Hoboken, NJ, USA: Wiley, 2004.

[39] C. E. Clark, “The greatest of a finite set of random variables,”
Operations Res., vol. 9, no. 2, pp. 145–162, 1961.

[40] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable archi-
tecture search,” 2018, arXiv:1806.09055.

[41] G. Raina, H. Corporaal, P. Cuijpers, M. Peemen, and G. Rauwerda,
“Deep convolutional network evaluation on the Intel Xeon Phi:
Where subword parallelism meets many-core,” Master’s thesis,
Eindhoven Univ. Technol., Eindhoven, Netherlands, 2016. [Online].
Available: https://pure.tue.nl/ws/files/46932913/844256-1.pdf

[42] C. Zhuang, S. Zhang, X. Zhu, Z. Lei, J. Wang, and S. Z. Li, “FLDet:
A CPU real-time joint face and landmark detector,” in Proc. IAPR
Int. Conf. Biometrics, 2019, pp. 1–8.

[43] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[44] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.

[45] S.Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM:Convolutional block
attentionmodule,” inProc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

TianchenWang (Student Member, IEEE) received
the PhD degree from the University of Notre Dame,
Notre Dame, Indiana, in 2020. He is currently a
senior research scientist with Comcast AI, respon-
sible for develop computer vision and deep learn-
ing edge solutions. He has published more than 20
technical papers in conferences and journals. His
current research focuses on the application and
implementation of deep learning and computer
vision.

2726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 01,2022 at 03:11:06 UTC from IEEE Xplore.  Restrictions apply. 

https://pure.tue.nl/ws/files/46932913/844256-1.pdf


Jiawei Zhang received the bachelor’s degree in
information and computing science from Xidian
university, in 2017. He is currently working toward
the PhD degree in computer science in the Shang-
hai Key Laboratory of Data Science, School of
Computer Science, Fudan University, Shanghai,
China. Hemajors in biomedical image analysis.

Jinjun Xiong (Member, IEEE) received the PhD
degree from the University of California at Los
Angeles, Los Angeles, California, in 2006. He is
currently the empire innovation professor with
the Department of Computer Science and Engi-
neering, University at Buffalo (UB). Previously, he
was program director and a research staff mem-
ber with IBM Thomas J. Watson Research Cen-
ter, Yorktown, New York, responsible for building
world-class programs on cognitive computing
systems research. He has published more than

100 technical papers in refereed international conferences and journals.
His current research interests include future computing systems, cogni-
tive computing, Big Data analytics, smarter energy, and very large-scale
integrated circuit designs. He was a recipient of numerous best paper
awards, the Best Paper Award nominations, and the Outstanding PhD
Award from the University of California at Los Angeles.

Song Bian (Member, IEEE) received the BS
degree with highest distinction from the University
of Wisconsin-Madison, in 2014, and the MS and
PhD degrees from Kyoto University, in 2017 and
2019, respectively. He is currently an associate
professor with Beihang University. His main areas
of interest include applied cryptography, secure
multi-party computation, and domain-specific hard-
ware accelerators. He was a research fellow of the
Japan Society for the Promotion of Science from
2017 to 2019. He served as technical committee

members/reviewers for top international conferences/journals across dif-
ferent fields of studies, including AAAI, ASP-DAC, Journal of Cryptology,
andACMTransactions on Design Automation of Electronic Systems. He is
amember of the IPSJ.

Zheyu Yan received the BS degree from Zhe-
jiang University, in 2019. He is currently working
toward the PhD degree in the Department of
Computer Science and Engineering, University of
Notre Dame. His general research direction is
hardware/software co-design for neuromorphic
computing. His current interests are uncertainty
modeling of non-volatile emerging device-based
neural accelerators and achieving efficient DNN
inference via co-design efforts.

Meiping Huang received the BS degree in clinical
medicine fromSun Yet-sen University, Guangzhou,
China, and the MS degree in medical imaging from
Jinan University. She is currently a chief physician
with the Interventional Catheterization Lab, Guang-
dong Provincal People’s Hospital, Guangzhou,
China. She is members of the National Imaging
Group of the Chinese Society of Cardiology, the
National Pediatrics Group of the Chinese Society
of Radiology, the National Radiology Group of the
Chinese Pediatrics Society, and a variety of other

provincial societies. She has presided four Science and Technology Plan-
ning Project of Guangdong Province, and participated in more than 10
national-level and scientific research projects. Her research interests
include imaging diagnosis of cardiovascular disease, surgical navigation of
structural heart disease based on multimodal imaging technology, applica-
tion of Big Data technology and artificial intelligence in cardiovascular med-
icine, 3D printing, and visualization technology research and development.

Jian Zhuang received the BS degree in clinical
medicine from First Military Medical University,
Guangzhou, China, in 1984, and the MS and PhD
degrees in cardiovascular surgery form Guang-
dong Cardiovascular Institute, Guangzhou, China.
He is the director of Guangdong Cardiovascular
Disease Center, Guangdong Provincial People’s
Hospital. He is also the director ofWHOCollaborat-
ing Centre for Research and Training in Cardiovas-
cular Diseases, and the chief expert of Heart
Surgery at Guangdong Provincial People’s Hospi-

tal. He was the chairman of ninth committee of the Chinese Society of Tho-
racic and Cardiovascular Surgery. Since 1989, he worked with Guangdong
Provincial People’s Hospital and engaged in the prevention, diagnosis and
treatment of congenital heart disease, covering patients in all age. He is
also interested at applications of artificial intelligence and three-dimen-
sional technologies in structural heart diseases to increase the precision
and intelligence of clinical practice.

Takashi Sato (Member, IEEE) received the BE
and ME degrees from Waseda University, Tokyo,
Japan, and the PhD degree from Kyoto Univer-
sity, Kyoto, Japan. He was with Hitachi, Ltd.,
Tokyo, Japan, from 1991 to 2003; with Renesas
Technology Corp., Tokyo, Japan, from 2003 to
2006; and with the Tokyo Institute of Technology,
Yokohama, Japan. In 2009, he joined the Gradu-
ate School of Informatics, Kyoto University, Kyoto,
Japan, where he is currently a professor. He was
a visiting industrial fellow with the University of

California, Berkeley, from 1998 to 1999. His research interests include
CAD for nanometer-scale LSI design, fabrication-aware design method-
ology, and performance optimization for variation tolerance. He is a
member of the Institute of Electronics, Information and Communication
Engineers (IEICE). He received the Beatrice Winner Award at ISSCC
2000, and the Best Paper Award at ISQED 2003.

Xiaowei Xu received the BS and PhD degrees in
electronic science and technology from the Huaz-
hong University of Science and Technology,
Wuhan, China, in 2011 and 2016, respectively. He
is currently an assistant professor with Guang-
dong Cardiovascular Institute, Guangdong Pro-
vincial People’s Hospital, Guangzhou, China. He
worked as a post-doc researcher with the Univer-
sity of Notre Dame, IN, USA from 2016 to 2019.
His research interests include deep learning, and
medical image segmentation. He was a recipient

of DAC system design contest special service recognition reward in 2018
and outstanding contribution in reviewing, Integration, the VLSI journal in
2017. He has served as TPC members in ICCD, ICCAD, ISVLSI and
ISQED.

Yiyu Shi (Senior Member, IEEE) received the BS
degree in electronic engineering from Tsinghua
University, Beijing, China in 2005, and the MS
and PhD degrees in electrical engineering from
the University of California, Los Angeles, in 2007
and 2009, respectively. He is currently a profes-
sor with the Department of Computer Science
and Engineering, University of Notre Dame, the
site director of NSF I/UCRC Alternative and Sus-
tainable Intelligent Computing, and the director of
the Sustainable Computing Lab (SCL). His cur-

rent research interests focus on hardware intelligence and biomedical
applications. In recognition of his research, many of his papers have
been nominated for the best paper awards in top conferences. He was
also the recipient of NSF CAREER Award, IEEE Region 5 Outstanding
Individual Achievement Award, IEEE TCVLSI Mid-Career Research
Award, among others. He is the education chair of ACM SIGDA, deputy
editor-in-chief of the IEEE VLSI CAS Newsletter.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WANG ETAL.: VISUALNET: AN END-TO-END HUMAN VISUAL SYSTEM INSPIRED FRAMEWORK TO REDUCE INFERENCE LATENCYOF... 2727

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 01,2022 at 03:11:06 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


