
SCNN: A General Distribution based Statistical Convolutional Neural Network
with Application to Video Object Detection

Tianchen Wang1, Jinjun Xiong2, Xiaowei Xu3, Yiyu Shi4
1,3,4Department of Computer Science and Engineering, University of Notre Dame

2IBM Thomas J. Watson Research Center
{1twang9, 3xxu8, 4yshi4}@nd.edu, 2jinjun@us.ibm.com

Abstract

Various convolutional neural networks (CNNs) were devel-
oped recently that achieved accuracy comparable with that of
human beings in computer vision tasks such as image recog-
nition, object detection and tracking, etc. Most of these net-
works, however, process one single frame of image at a time,
and may not fully utilize the temporal and contextual correla-
tion typically present in multiple channels of the same image
or adjacent frames from a video, thus limiting the achievable
throughput. This limitation stems from the fact that existing
CNNs operate on deterministic numbers. In this paper, we pro-
pose a novel statistical convolutional neural network (SCNN),
which extends existing CNN architectures but operates directly
on correlated distributions rather than deterministic numbers.
By introducing a parameterized canonical model to model
correlated data and defining corresponding operations as re-
quired for CNN training and inference, we show that SCNN
can process multiple frames of correlated images effectively,
hence achieving significant speedup over existing CNN mod-
els. We use a CNN based video object detection as an example
to illustrate the usefulness of the proposed SCNN as a general
network model. Experimental results show that even a non-
optimized implementation of SCNN can still achieve 178%
speedup over existing CNNs with slight accuracy degradation.

Introduction
With strong feature extraction capabilities from deep convo-
lutional neural networks (CNNs) and many optimized imple-
mentations (Xu et al. 2017) of the associated deep learning
frameworks, the performance of various computer vision
tasks has been drastically improved. For example in image
recognition and object detection, deep CNN architectures as
ResNet (He et al. 2016), DenseNet (Huang et al. 2017) and
frameworks as YOLO (Redmon and Farhadi 2017), faster
R-CNN (Ren et al. 2015) all outperform then state-of-the-art
by an impressive margin at the time of their publication.

However, a mainstay for any CNN based framework is
that it operates on deterministic weights and inputs (Xu et
al. 2018a; 2018b). These frameworks process one image at a
time during both training and inference. This is obviously not
ideal as it largely ignores both temporal and contextual corre-
lation existing among channels and adjacent frames. To break

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this mainstay, in this paper we propose to explicitly model
such correlation by extracting parameterized canonical distri-
butions from correlated inputs (such as adjacent frames in a
video), and design a statistical convolutional neural network
(SCNN) to propagate these correlated distributions directly.
Our SCNN can be easily integrated into existing CNN archi-
tectures by replacing their deterministic operations with our
statistical counterparts operating on parameterized canonical
distributions. Then with little modification to the existing
gradient descent based scheme, our SCNN can be trained
using the same forward and back propagation procedures.

More specifically, we first build a linear parameterized
canonical form via independent component analysis (ICA)
to represent the statistical distribution of each input com-
ponent to capture its temporal and contextual correlation.
We then define all the required CNN operations (such as
convolution, ReLU, batch normalization etc.) in terms of
the parameterized canonical form, including their various
partial gradients for backward propagation, thus enabling
us to integrate SCNN with any existing CNN implemen-
tation frameworks easily. To show the effectiveness of the
proposed SCNN, we further apply it to video object detec-
tion task and propose a new objective function that improves
SCNN based training. Even though many great successes
have been achieved in objection detection for static images
(Ren et al. 2015; Redmon and Farhadi 2017; Lin et al. 2018;
Liu et al. 2016), the performance of video object detection
still has a large room for improvement, especially for its real-
time throughput. Since its introduction in ImageNet competi-
tion, multiple solutions have been proposed (Kang et al. 2017;
Han et al. 2016), most of which solve the problem by extend-
ing static image object detection methods to consider adjacent
frames for temporal information. Their efficiency is, how-
ever, not satisfactory for online detection, and for training,
it would take several days to generate video tubelets (Kang
et al. 2017). A recent research (Zhu et al. 2017) proposed a
flow-guided feature aggregation where it considers adjacent
frames at feature level rather than at the box level, but it
requires repeated sampling and complex modeling. It is still
desirable to have a more direct and effective way of modeling
correlated adjacent frames.

Our main contributions in this paper are as follows. 1) We
propose a novel statistical convolutional neural network that
can act as a backbone alternative to any existing CNN ar-

chitectures and operates directly on distributions rather than
deterministic numbers, 2) We use a parameterized canon-
ical model to capture correlated input data for CNN and
reformulate popular CNN layers to adapt their forward and
backward computation for parameterized canonical models.
3) We adopt video object detection as an examplar applica-
tion and introduce a new objective function for better training
of SCNN. 4) We conduct experiments on an industrial UAV
object detection dataset and show that SCNN backbone can
achieve up to 178% speedup over conventional counterpart
with slight accuracy degradation.

Review of ICA
ICA is a well-known technique in signal processing to sepa-
rate a multivariate signal into a set of additive random sub-
components that are statistically independent from each other.
The random subcomponents are typically modeled as non-
Gaussian distributions. In some cases, a priori knowledge of
the probability distributions of these random subcomponents
can be also incorporated into ICA. The random subcompo-
nents are also called the basis of the corresponding multivari-
ate signal. We denote an n-dimensional multivariate signal as
a random vector D=(D1,D2,...,Dn)T . The random subcompo-
nents are denoted as a random vector X=(X1,X2,...,Xm)T . For
a given set of N samples (realizations) of the multivariate sig-
nal’s random vector D, each component Di of the N samples
can be treated as being generated by a sum of some realiza-
tion of the m independent random subcomponents, which is
given by

Di=ai,1X1+ai,2X2+···+ai,kXk+···+ai,mXm, k∈{1,m} (1)

where ai,k is the mixing weight of the corresponding random
subcomponent Xk. We can put them compactly in a matrix
form as follows

D=AX (2)

where A is the mixing matrix. The goal of ICA is to estimate
both the mixing matrix A and the corresponding realization of
the random subcomponent X (i.e., X=WD). The realization
of the basis X can be obtained either by inverting A directly
(i.e., W=A−1) or through the pseudo inverse of A.

The ICA has also been extended to consider the case where
a zero-mean uncorrelated Gaussian noise Ri is added. With-
out loss of generality, we can normalize all basis (random
subcomponents) to have a zero mean and standard deviation
of 1. In other words, we have

Di=ai,0+ai,1X1+ai,2X2+···+ai,mXm+ai,rRi (3)

where ai,0 is the mean value for Di, and ai,r is the weighting
of the modeled uncorrelated Gaussian noise term.

Statistical Convolutional Neural Network
Correlated Inputs Modeling
Many existing applications with CNN models have inputs
that exhibit strong temporal and contextual (spatial) corre-
lations, such as multiple adjacent frames in a video stream.
Therefore, we can model these inputs as a multivariate sig-
nal. For a given set of N samples (realizations) of the inputs,

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Basis Extraction Error(%)

0
20
40
60
80

100
120
140
160

Pr
ob

ab
ili

ty
 D

en
si

ty

0.250
0.375
0.500
0.625
0.750
0.875

Figure 1: ICA modeling error (%) with different m/N .

such as multiple correlated frames of a video snippet, we can
represent each component of the inputs via ICA as a linear
additive model of a set of m independent random subcom-
ponents as shown in Equation (3). In the rest of the paper,
we define N as extraction span and m as the basis dimension.
Moreover, because the random subcomponents X1, ..., Xm
are shared among all input components, we can use the above
model to compactly capture both the temporal and contextual
correlations. We call such a model as a linear parameterized
canonical model, and the weights such as ai,k as parameters.

To demonstrate the accuracy of ICA to model correlated
frames in a video, we extract the distributions from a few
small video snippets in our experiment dataset (DAC-Contest
2018) and depict the error distribution between the original
data and the unmixing result in Figure 1. From the figure we
can see that increasing the ratio of m/N in general reduces
the error, and the error is mostly bounded by 3%.

In the context of CNN, this type of modeling of correlated
inputs raises a number of interesting questions. (1) For a
given trained CNN network with model parameters, how do
we carry out the inference for such a parameterized canonical
model? (2) How to train such a CNN network with each input
being represented as a parameterized canonical form? We
will provide answers to address the above two questions in
the rest of the paper.

Because of the way we model the inputs as a parameter-
ized statistical distribution, we call our network as SCNN.
With parameterized canonical model, the overall structure of
our SCNN is illustrated in Figure 2. With details discussed in
the following sections, the input video stream is divided into
snippets, each containing a number of correlated adjacent
frames. Those images in the same snippet will be modeled by
one image of the original image size, but each pixel of which
is taking as a canonical form. These canonical forms are for-
ward and back propagated through CNN for both training
and inference. At the output of the network, all the canonical
forms are converted to the corresponding scalar values by
plugging the estimated realizations of random subcompo-
nents (X=WD) of each input video snippet. With that, we
obtain a feature map with scalar values, hence the conven-
tional objective function evaluation can be carried out.

Correlated inputs

T Sets

Outputs

Neural network

processing

with distributions

Canonical model

extraction

ICA

… …

… …

…

Basis

distributions
Each pixel is a

distribution

Evaluation

Wi,j
l …

…

Statistical

operation

Basis values of

each images set

1
st

 image:{a1,0, a1,1, a1,2,…}

2
ed

 image:{a2,0, a2,1, a2,2,…}

…

Distributions

X:

Coefficient vectors

Data:
Coefficient vectors

for distributions

Weight:
Deterministic

numbers

Wi,j
l

Targets

1 Set of

 N images

T Sets

1 Set of

 N images

Figure 2: Overall structure of SCNN (illustrating an object detection task in a video).

Forward Propagation in SCNN
In a typical CNN network, there are a number of commonly
used layers, such as fully connected layer (FC), convolutional
layer (CN), ReLU layer, max-pooling layer, batch normaliza-
tion layer. We will provide the corresponding implementation
details in SCNN for these commonly used layers in the fol-
lowing. Again we would like to emphasize that the discussion
here does not restrict to any particular CNN architecture. In
our experiments we will demonstrate our implementation on
various CNN architectures.

Before we delve into the details of each layer imple-
mentation, we note that there are two core operations for
these layers: (1) a weighted sum of a set of input num-
bers (which is used frequently for both FC and CN lay-
ers), and (2) a max of a set of input numbers (which is
frequently used for both ReLU and max-pooling layers).
In SCNN, the input numbers to the above two operations
are no longer deterministic numbers, but parameterized sta-
tistical distributions. We discuss how we provide solutions
to these two core operations first. Please note that, some
of the discussion related to the sum and max operations
has been covered in prior literature in the area of statistical
timing analysis (Xiong, Zolotov, and Visweswariah 2008;
Cheng, Xiong, and He 2009; Visweswariah et al. 2006;
Singh and Sapatnekar 2006). We obtain a lot of inspiration
from their work. We only repeat essential points in this pa-
per for completeness, but refer interested readers to those
references for greater details and proofs.

Sum operation For two inputs Di and Dj , their sum can be
represented as

Dsum=Di+Dj

=(ai,0+aj,0)+(ai,1+aj,1)X1+(ai,2+aj,2)X2+...

+(ai,m+aj,m)Xm+ai,rRi+aj,rRj .

(4)

As we can see, the sum operation as defined above will
give us back a similar parameterized canonical form. This
is important as it allows us to carry out similar operations

repeatedly across layers. Because of this, for multiple inputs,
similar sum operations can be applied easily. Most interest-
ingly, the computation involves only those parameters, but
not random subcomponents.

Max operation The max operation is a bit more involved.
We start with the most common scenario where the distribu-
tion of random subcomponents X1, ..., Xm are modeled as a
Gaussian distribution. In this case, for two inputs Di and Dj ,
their max can be represented as

Dmax=max(Di,Dj)=amax,0+

m∑
k=1

amax,kXk+amax,rRmax (5)

where amax,0 and amax,r are obtained by matching the first
and 2nd moments of the above equation on both sides; amax,k
are obtained via the tightness probabilities as introduced in
(Visweswariah et al. 2006) to represent the probability that
one distribution is larger than (or dominates) the other given
by

ti=

∫ ∞
−∞

1

σDi
φ(
x−ai,0
σDi

)Φ(

(
x−aj,0
σDj

)−ρ(
x−ai,0
σDi

)√
1−ρ2

)dx=Φ(β) (6)

where θ, β, φ and Φ are defined as
θ=

√
σ2
Di

+σ2
Dj
−2σDiσDj , β=(

ai,0−aj,0
θ

),

φ(x)=
1
√

2π
exp(−

x2

2
), Φ(y)=

∫ y

−∞
φ(x)dx.

(7)

Therefore, the mean amax,0 and variance σ2
Dmax

of Dmax can be
expressed analytically as

amax,0=ai,0Φ(β)+aj,0Φ(−β)+θφ(β),

σ
2
Dmax

=(σ
2
Di

+a
2
i,0)Φ(β)+(σ

2
Dj

+a
2
j,0)Φ(−β)

+(ai,0+aj,0)θφ(β)−a2max,0.

(8)

And the corresponding canonical form of Dmax is

Dmax=amax,0+

m∑
k=1

amax,kXk+amax,rRmax

where amax,k=Φ(β)ai,k+Φ(−β)aj,k, k={1,m},

amax,r=(σ
2
Dmax
−

m∑
k=1

a
2
max,k)

1/2
.

(9)

It is noted that σ2
Dmax
−
∑m
k=1a

2
max,k is proved to be always non-

negative by (Sinha, Shenoy, and Zhou 2005). For simplicity,
we use Φ and φ to represent Φ(β) and φ(β), and sum and max
to represent the statistical operations between distributions,
and the notations will be used wherever there is no ambiguity.

Same as the sum operation, the max operation as defined
above will give us back a similar parameterized canonical
form. This is important as it allows us to carry out similar
max operations repeatedly across layers. Because of this, for
multiple inputs, we can repeatedly apply the two input max
operations and obtain the final multi-input max result, i.e.,

max(D1,D2,...,Dp)=max(D1,max(D2,max(D3,....)))). (10)

In the same spirit, more sophisticated approaches to handle
the max operation of multiple inputs and non-Gaussian distri-
butions have been discussed in references such as (Xiong et
al. 2006; Mogal et al. 2007). In the interests of space, we’ll
not repeat it here.

FC & CN layers Key to the two layers’ operation is the
computation of a weighted sum. When the inputs are parame-
terized canonical form, we can decompose the weighted sum
in two logic steps: (1) for each input, we scale the input by
the weight and obtain a similar canonical form; and (2) for
the remaining sum operation, it is carried out same as the
sum of a set of canonical forms.

For FC, given an input with p distributions Dli(i∈{1,p}) at
layer l, the forward operation computes the jth output distri-
butions Dl+1

j (j∈{1,q}) with weight w as:

D
l+1
j =a

l+1
j,0 +

m∑
k=1

a
l+1
j,k Xk+a

l+1
j,r R=

p∑
i=1

wi,jD
l
i

=

p∑
i=1

wi,ja
l
i,0+

p∑
i=1

m∑
k=1

wi,ja
l
i,kXk+

√√√√ p∑
i=1

(wi,jali,r)2R.

(11)

For CN, an input distribution tensor would be given as
Dl∈Rm+2,h,w (h×w distributions at layer l) and a convolution
filter W∈Rx

′,y′ (x′, y′ denote the convolution kernel mask size)
for the next layer, we have the forward propagation for SCNN
CN at position x,y expressed as

D
l+1
x,y =a

l+1
x,y,0+

m∑
k=1

a
l+1
x,y,iXi+a

l+1
x,y,rR=D

l
x,y∗Wx,y

=
∑
x′

∑
y′
Wx′,y′a

l
x−x′,y−y′,0+

∑
x′

∑
y′

m∑
k=1

Wx′,y′a
l
x−x′,y−y′,kXk

+

√∑
x′

∑
y′

(Wx′,y′a
l
x−x′,y−y′,r)2R

(12)

where ∗ denotes the convolution operation.

ReLU and max-pooling layers Since the key operation
in both ReLU and max-pooling layers is the max operation,
we can easily extend the max operation as discussed above
to handle the canonical inputs. In the case of ReLU, the
reference point is not necessary to be zero, and it can be
defined as a distribution. But in our current implementation,
we still choose a constant reference for ReLU.

In max-pooling layer, new distributions are generated from
the previous layer distributions under sliding masks with max

operation. Given an input distribution tensor Dl∈Rm+2,h,w,
and a max pooling filter K∈Rhf ,wf , the problem is to obtain
an output distribution tensor Dl+1 of max distribution from
partitioned subtensors. Therefore the forward propagation
with stride s and without padding can be expressed as

D
l+1
x,y = max

(x,y)∈[s×x,s×x+hf]×[s×y,s×y+wf]
D
l
x,y. (13)

In traditional max-pooling layer, the locations of maximum
values at the current layer under kernel masks are stored for
back propagation. During SCNN max-pooling implementa-
tion, we store the tightness probabilities between the corre-
sponding distributions during forward propagation, which
indicate the contributions of the distributions at the current
layer to the ones at the next layer.

Batch normalization layer In SCNN, we do not follow
the traditional batch normalization layer (Ioffe and Szegedy
2015) definition. Instead, we define the operation as follows
in consideration of the canonical inputs: given an input dis-
tribution Dli with basis sensitivity ai,k and variance σ2

Dli
, the

normalization output distribution Dl+1
i is expressed as

D
l+1
i =a

l+1
i,0 +

m∑
k=1

a
l+1
i,k Xk+a

l+1
r Ri

=a
l
i,0+

m∑
k=1

(γ
ali,k− 1

n

∑m
j=1

ali,j√
σ2

Dli

+ε
+β)+a

l
rRi

(14)

where γ, β are the learning coefficients. Instead of evaluating
the values on mini-batch, we perform normalization on each
input distribution. Note that ai,0 and ai,r are not involved in
normalization.

Inference at the output layer After we carry out the pa-
rameterized forms through the various layers in the CNN
network as discussed above, we arrive at the end of the net-
work where we need to decide the output. Here we resort to
a simple approach, i.e., we convert the canonical forms to
their corresponding scalar values by plugging the estimated
realizations of random subcomponents X=WD. With that, we
obtain the output layer with scalar values, hence conventional
inference at the last output layer can be carried out.

Back Propagation in SCNN
The back propagation is key to the training of the SCNN
by computing various gradients of the cost function with
respect to network parameters, which in term depends on
computing the partial derivatives of various operation outputs
with respect to their inputs.

Partial derivative for sum Given two distributions Di, Dj
along with two weights wi, wj ,and the sum Dsum=wiDi+wjDj ,
the partial derivative of Dsum w.r.t. the sensitivities in Di is
expressed as

∂Dsum

∂ai,k
=wi,

∂Dsum

∂ai,r
=

wi

asum,r

(15)

where k∈{0,m}. Then with the help of gradient of sum oper-
ation, the derivatives of FC and CN in SCNN are obtained
accordingly. Given the gradient of Dl+1

j at layer l+1 as δl+1
j

(j∈{1,q}), the gradients of each sensitivities in distribution Dli

(i∈{1,p}) at layer l are shown as

δ
l
i,k=

q∑
j=1

δ
l+1
j

∂Dl+1
j

∂ali,k
=

q∑
j=1

δ
l+1
j wi,j , k∈{0,m},

δ
l
i,r=

q∑
j=1

δ
l+1
j

∂Dl+1
j

∂ali,r
=

q∑
j=1

δ
l+1
j

wi,j

al+1
n,k

.

(16)

The partial derivatives of total cost L w.r.t. corresponding
weight wi,j in FC goes to

∂L

∂wi,j
=δ

l+1
j

∂Dl+1
j

∂wi,j
=δ

l+1
j (

m∑
k=0

a
l
i,k+

ali,r

al+1
j,r

). (17)

The derivative of SCNN CN layer follows the same path.
Given the gradient of Dl+1 w.r.t. total cost L as δl+1, the
gradients of each sensitivities in distribution Dlx,y at location
x,y as δlx,y are shown as

δ
l
x,y,k=

∂L

∂alx,y,k
=δ

l+1
x,y,k∗W

l+1
−x,−y, k∈{0,m},

δ
l
x,y,r=

∂L

∂alx,y,r
=
δl+1
x,y,ra

l
x,y,r

al+1
x,y,r

∗(W l+1
−x,−y)

2
.

(18)

The gradient of convolution weight is derived as

∂L

∂W l+1
x,y

=

m∑
k=0

δ
l+1
x,y,k∗a

l
−x,−y,k+

δl+1
x,y,rW

l+1
x,y

al+1
x,y,r

∗(al−x,−y,r)
2
. (19)

Partial derivative for max The derivative of max in distri-
butions is mainly involved in the back propagation of SCNN
ReLU and Max-pooling layer. Given two distributions Di and
Dj with Dmax=max(Di,Dj), the gradient of mean and variance
of Dmax with respect to Di is derived by (Xiong, Zolotov, and
Visweswariah 2008). We follow the similar routine and de-
rive the gradients of each sensitivities of Dmax with respect to
the ones of Di. For p∈{1,m}, we first compute the gradient of
θ, φ, Φ with respect to ai,0, ai,p and ai,r. Then the gradients
of amax,q (q∈{1,m}), amax,0 and amax,r with respect to ai,0, ai,p and
ai,r are obtained as
∂amax,0

∂ai,0
=Φ,

∂amax,0

∂ai,p
=(ai,p−aj,p)

φ

θ
,

∂amax,0

∂ai,r
=ai,r

φ

θ
,

∂amax,q

∂ai,0
=(ai,q−aj,q)

φ

θ
,

∂amax,q

∂ai,p
=−(ai,q−aj,q)(ai,0−aj,0)(ai,p−aj,p)

φ

θ3
, p6=q,

∂amax,q

∂ai,p
=−(ai,q−aj,q)(ai,0−aj,0)(ai,p−aj,p)

φ

θ3
+Φ, p=q,

∂amax,q

∂ai,r
=−ai,r(ai,q−aj,q)(ai,0−aj,0)

φ

θ3
,

∂amax,r

∂ai,0
=

1

2amax,r

[2(ai,0−amax,0)Φ+θφ

+
φ

θ
(σ

2
Di
−σ2

Dj
−2

m∑
k=1

amax,k(ai,k−aj,k))],

∂amax,r

∂ai,p
=
ai,p−aj,p

2amax,r

[2(1−Φ)+(ai,0+aj,0−2amax,0)
φ

θ
+

(ai,0−aj,0)(σ
2
Dj
−σ2

Di
+2

m∑
k=1

amax,k(ai,k−aj,k))
φ

θ3
],

∂amax,r

∂ai,r
=

ai,r

2amax,r

[2Φ+(ai,0+aj,0−2amax,0)
φ

θ
+

(ai,0−aj,0)(σ
2
Dj
−σ2

Di
+2

m∑
k=1

amax,k(ai,k−aj,k))
φ

θ3
].

(20)

ReLU and max-pooling layers For ReLU, the derivation
of max is applied directly since the max is used independently
among distributions. For max-pooling, since the result is ob-
tained by repeatedly applying the two input max operations,
the gradients of the input distributions are obtained by itera-
tively applying the derivation of max with the stored tightness
probabilities.

Partial derivative for batch normalization Since the re-
formulated batch normalization layer does not have distribu-
tion operations involved, the derivative follows the traditional
approach. Given the gradient of loss L, the gradients of sensi-
tivities in distribution Dli are

∂L

∂ali,k
=

1

m
√
σ2

Dli

+ε
(m

∂L

∂âl+1
i,k

−
m∑
j=1

∂L

∂âl+1
j,k

−âl+1
i,k

m∑
j=1

∂L

∂âl+1
j,k

â
l+1
j,k),

∂L

∂γ
=

m∑
k=1

∂L

∂al+1
i,k

â
l+1
i,k ,

∂L

∂β
=

m∑
k=1

∂L

∂al+1
i,k

(21)

where âl+1
j,k =(al+1

j,k −β)/γ and k∈{1,m}.

Training, Inference, and Complexity Analysis
With back propagation as discussed above, the training can
be easily carried out as follows. The distributions are first
extracted by ICA with a predefined extraction span. The ex-
tracted distributions then propagate through the constructed
SCNN layers. Before entering the evaluation module, the
propagated distributions are unmixed to form a temporal fea-
ture map. When the loss is obtained after evaluation with
the proposed objective function, the error is propagated back-
ward through the derived route. The gradients of the canonical
form distributions are calculated to act as the gradient outputs
of the corresponding layers. Then the weights with determin-
istic numbers are updated based on the obtained gradient
outputs and the predefined learning rate.

The speedup of SCNN mainly comes from the fact
that N input images are modeled by a single parameter-
ized canonical model of the same size. On the other hand,
the computation complexity at each layer, including max,
sum and assigning weights in forward propagation is in-
creased by O(m). In addition, SCNN requires the extrac-
tion of the parameterized canonical model by ICA at the
input, which incurs additional complexity overhead. For-
tunately, with the fast ICA implementations available on
GPUs, the execution time is negligible compared with the
SCNN inference time (Ramalho, Tomas, and Sousa 2010;
Kumara et al. 2016). As such, networks with SCNN back-
bone can achieve an inference speedup of approximately N/m.
Such analysis is supported by our experiments later.

Extension to Nonlinear Canonical Form
Note that so far we have only discussed the linear parame-
terized canonical form obtained from ICA and its associated
extension to various CNN layers. It is also possible to obtain
other nonlinear parameterized canonical form as suggested
by (Singh and Sapatnekar 2006; Cheng, Xiong, and He 2009)
in a different context. We believe such an extension can be
adopted for the proposed SCNN as well. For simplicity, we

will not discuss it further in this paper but defer it as our
future work.

Video Object Detection: an Application
We believe SCNN can be a general and powerful backbone to
any CNN networks and it processes parameterized statistical
distributions rather than a deterministic values. Many CNN-
based applications would benefit from such a representation.
As a proof of point, we apply SCNN to the video object de-
tection task to show its usefulness. Please note that, our initial
implementation of SCNN (i.e., the statistical version of FC,
CN, ReLU, Max-pooling and Batch normalization etc.) is far
from perfection compared to those matured implementations
in existing frameworks such as TensorFlow, Caffe, PyTorch.
Because of that, our current implementation of SCNN to
solve the video object detection is not yet optimized. Hence
it is not our intention in this paper to compete in either train-
ing performance or inference quality with the state-of-the-art
video object detection techniques such as Faster R-CNN,
YOLOv2/v3 etc (Ren et al. 2015; Redmon and Farhadi 2017;
2018), although we have shown the theoretic performance
advantage. Instead, we want to use our implementation to
show the great potential of SCNN for solving important com-
puter vision problems and where it can potentially shine. In
solving the video object detection problem, we proposed a
few modifications to the commonly used object detection
techniques in the context of SCNN.

We first replace a few commonly used backbone CNN
networks for object detection with the proposed SCNN, in-
cluding VGG11, VGG16, ResNet18 and ResNet34. We then
add a simple evaluation module consisting of conv-relu-conv-
relu-conv layers without padding. Because SCNN can ef-
fectively process multiple frames at the same time, a few
changes need to be made when designing the detection layer
and the objective function.

For simplicity, we start with the case where there is only
a single target object in videos and design a simplified de-
tection layer based on YOLOv2 framework(Redmon and
Farhadi 2017). In the detection layer of YOLOv2, predefined
anchor boxes along with their confidence are predicted at
each sub grid cell (13×13 total) to detect objects. Such an
approach is, however, not directly applicable to process video
snippets with a continuously moving object captured by a sin-
gle canonical model. Therefore, we propose a new detection
layer with five predefined anchors (ai,w, ai,h for i∈{0,4}) at
the center of the map (effectively treating the map as a single
big cell). The network predicts coordinates for the box (tx, ty,
tw, th) along with its confidence. These predictions in turn
define the predicted bounding box as follows:

bx=σ(tx), bw=
ai,w

β
log(1+exp(βtw)),

by=σ(ty), bh=
ai,h

β
log(1+exp(βth))

(22)

where σ denotes the sigmoid function and β is for the for-
mulation of Softplus. Note that we use Softplus function to
configure the width bw and height bh rather than direct expo-
nential as was used in YOLOv2. This modication brings a
more stable and smooth transformation on anchor size and fit
well with our one big cell setting.

Since SCNN simultaneously handles multiple frames, the
detection objective function should not only consider the pre-
cision on a single frames, but also account for the continuity
of objects among adjacent frames. As such, we propose a
new objective function for SCNN, which is a combination of
coordinates l2 loss (Lcoord), confidence loss (Lconf), polynomial
fitting loss (Lfit), and IOU loss (LIOU).

The IOU loss is first introduced in UnitBox(Yu et al. 2016),
which increases the accuracy by regressing the prediction
box as a whole unit. However, the curve of natural logarithm
used in Unitbox has a steep slope, which is weak when the
IOU gets high and needs fine-tuning. Moreover, if we only
use the IOU loss in the objective function, it would remain
constant when the prediction box is out of the target area. This
will not be helpful to improve the convergence of training.
Intuitively, we would prefer an IOU loss that can compensate
the coordinates loss to further increase the IOU. Therefore, in
this work, we propose to use a negative log sigmoid function
of IOU. Moreover, different from YOLOv2 where IOU is
included in the confidence score, we use confidence loss Lconf

to detect whether there is an object or not.
To further improve the accuracy, we observe that within

the frames in the extraction span, the trajectories of object
bounding box coordinates can be approximated by a polyno-
mial curve. After predicting coordinates with Equation 22,
we adopt the least-square polynomial fitting to obtain the
corrected coordinates along with the fitting loss Lfit. The loss
is then appended to the objective function as a penalty term.

In summary, given an initial bounding box prediction z=

(bx,by,bw,bh,Cz), after fitting correction ẑ and its corresponding
ground truth z̃, the IOU between z and z̃ marked as Xz,z̃, the
objective function L(z,z̃) is expressed as:

L(z,z̃)=λcoordLcoord+λfitLfit+λconfLconf+λIOULIOU

=λcoord

∑
i∈{x,y,w,h}

(zi−z̃i)2+λfit

∑
i∈{x,y,w,h}

(zi−ẑi)2

+λconf(
∑

1obj
(Cz−Cz̃)

2
+
∑

1noobj
(Cz−Cz̃)

2
)

−λIOUln(
1

1+exp(−αX(z,z̃))
)

(23)

where the subscripts x,y,w,h represent the center coordinates,
the width and height of the bounding box respectively; λ are
the coefficients of loss terms; C is the objectness confidence
score; α in LIOU is to adjust the IOU loss curve.

Experiment Implementation Details
We choose PyTorch as our evaluation platform to implement
all models. The experiments were run on 16 cores of Intel
Xeon E5-2620 v4, 256G memory, and an NVIDIA GeForce
GTX 1080 GPU. The dataset(Xu et al. 2018c) is the latest
video object detection dataset from the DAC 2018 system
design contest. The dataset is challenging as videos are cap-
tured by drones in the air and the objects captured are small
with a large variety in terms of its object classes, appearances,
environment, and video qualities.

For accuracy, we use mean average precision (mAP) that
calculates the ratio of IOU between predicted and ground
truth bounding boxes larger than 0.5. Note that such a metric
is in fact not favorable to SCNN because SCNN is able to

Models VGG11 VGG16 ResNet18 ResNet34
m - 8 10 12 14 - 8 10 12 14 - 8 10 12 14 - 8 10 12 14

mAP 62.2 56.5 58.1 58.3 58.7 61.9 57.1 57.2 57.7 58.3 65.1 57.4 58.7 60.0 61.9 64 56.7 59.2 60.5 62.2
FPS 101 181 150 130 116 65 116 98 84 72 247 363 340 304 276 161 246 225 210 188

Table 1: Accuracy/speed comparison between networks with SCNN backbone (configured with various basis dimension m and
fixed extraction span N=16) and without SCNN backbone (marked with − in Row m).

Category boat building car drone horseride paraglider person riding truck wakeboard whale
w/o SCNN 90.0 91.3 60.7 50.1 40.5 60.1 58.6 80.4 30.5 28.8 90.4
w/ SCNN 91.0 73.8 76.6 42.5 24.3 48.7 65.7 86.9 28.7 20.7 82.3

Table 2: Accuracy (mAP) across categories of VGG16 with SCNN backbone (m=14, N=16) and the one without it.

process and evaluate multiple image frames (video snippets)
in one pass, while the conventional object detection is only
able to process one static image at a time which has some
inherent accuracy advantage. Nonetheless, our comparison
will show that SCNN can achieve a great speedup.

Overall the SCNN video object detection framework fol-
lows Figure 2. The input image size is 224×224 and 7×7 tempo-
ral feature maps are obtained for evaluation. The Stochastic
Gradient Descent (SGD) solver is applied in SCNN train-
ing with an initial learning rate 0.001. The momentum and
weight decay are always set to 0.9 and 0.0005, respectively.

We then implement VGG (Simonyan and Zisserman 2014)
and ResNet both with and without SCNN backbone for ac-
curacy and speed comparisons. VGG is known for its simple
sequential network which only uses 3×3 stacked convolu-
tional layers for feature extraction. ResNet is characterized
by its network-in-network structure which leads to effective
extremely deep network. For implementation with SCNN,
all the layers for feature extraction in these networks are re-
designed according to the previous discussion. For classifiers
in VGG and ResNet, the original fully connected layers are
replaced with the evaluator discussed previously. The number
of kernels in the evaluation module is updated according to
the output of the corresponding network. All networks are
trained from scratch with the same optimizer setting.

Results
The video object detection accuracy and speed for the net-
works with SCNN backbone using different basis dimension
m and the same extraction span (N=16), along with their coun-
terparts without SCNN backbone are shown in Table 1. From
the table we can see that networks with SCNN backbone can
achieve higher inference speed with slight accuracy degrada-
tion. For example, when m=8, VGG16 with SCNN backbone
can achieve a speedup of 178% with a 4.8% drop in mAP com-
pared with the one without it. This fully demonstrates the
efficiency of SCNN. Also, with larger basis dimension, net-
works with SCNN backbone tend to achieve better accuracy
at the cost of lower inference speed.

To further illustrate the performance of SCNN, we take
VGG16 as an example and compare the mAP of VGG16 with
and without SCNN backbone across multiple categories in
the dataset. The results are shown in Table 2.

Although SCNN can achieve reasonable accuracy as CNN
with higher FPS, we see from the Table 1 that SCNN has

lower mAP than CNN. By looking into the details in Ta-
ble 2, we find that SCNN in fact outperforms CNN for object
categories that are relatively smooth across frames such as
car and riding. This is because SCNN can mitigate object
occlusion and lens flare effects with its implicit modeling of
temporal correlations via ICA. In contrast, for objects such
as building, paraglider or horseride that are either too large or
too small, the errors due to ICA as shown in Fig 1 start to have
a negative impact. Rather than to use a linear parameterized
form as obtained by ICA, a direction for future improve-
ment will be to use the nonlinear parameterized distribution
that can model large-scale spatial correlation more explicitly.
Another possible direction is to explore the SCNN specific
network architecture rather than piggyback on existing CNN
architecture.

Conclusion and Discussion
In this paper we proposed a novel statistical convolutional
neural network (SCNN), which operates on distributions in
parameterized canonical model. Through a video object de-
tection example, we show that SCNN as an extension to any
existing CNNs can process multiple correlated images effec-
tively, achieving great speedup over existing approaches.

The performance of SCNN can be further enhanced by
utilizing the correlations not only between adjacent frames in
a video snippet but also among channels of the same frame.
This shall provide further speedup. Such a change may re-
quire, however, redesigning the CNN network topology be-
cause the input dimension is now different, a future research
direction worthy to explore. It will be also interesting to
see how SCNN can be used in other applications such as
uncertainty-aware image classification or segmentation.

References
Cheng, L.; Xiong, J.; and He, L. 2009. Non-gaussian statistical
timing analysis using second-order polynomial fitting. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems 28(1):130–140.
DAC-Contest. 2018. 2018 dac system design con-
test. https://github.com/xyzxinyizhang/
2018-DAC-System-Design-Contest.
Han, W.; Khorrami, P.; Paine, T. L.; Ramachandran, P.;
Babaeizadeh, M.; Shi, H.; Li, J.; Yan, S.; and Huang, T. S.
2016. Seq-nms for video object detection. arXiv preprint
arXiv:1602.08465.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q.
2017. Densely connected convolutional networks. In CVPR,
volume 1, 3.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167.
Kang, K.; Li, H.; Yan, J.; Zeng, X.; Yang, B.; Xiao, T.; Zhang,
C.; Wang, Z.; Wang, R.; Wang, X.; et al. 2017. T-cnn: Tubelets
with convolutional neural networks for object detection from
videos. IEEE Transactions on Circuits and Systems for Video
Technology.
Kumara, T. N.; Gamaarachchi, H.; Prathap, G.; and Ragel, R.
2016. Generalized and hybrid fast-ica implementation using
gpu. In Advances in ICT for Emerging Regions (ICTer), 2016
Sixteenth International Conference on, 13–20. IEEE.
Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollár, P. 2018.
Focal loss for dense object detection. IEEE transactions on
pattern analysis and machine intelligence.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-
Y.; and Berg, A. C. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision, 21–37. Springer.
Mogal, H. D.; Qian, H.; Sapatnekar, S. S.; and Bazargan, K.
2007. Clustering based pruning for statistical criticality com-
putation under process variations. In Proceedings of the 2007
IEEE/ACM international conference on Computer-aided de-
sign, 340–343. IEEE Press.
Ramalho, R.; Tomas, P.; and Sousa, L. 2010. Efficient indepen-
dent component analysis on a gpu. In Computer and Informa-
tion Technology (CIT), 2010 IEEE 10th International Confer-
ence on, 1128–1133. IEEE.
Redmon, J., and Farhadi, A. 2017. Yolo9000: better, faster,
stronger. arXiv preprint.
Redmon, J., and Farhadi, A. 2018. Yolov3: An incremental
improvement. arXiv.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn: To-
wards real-time object detection with region proposal networks.
In Advances in neural information processing systems, 91–99.
Simonyan, K., and Zisserman, A. 2014. Very deep con-
volutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Singh, J., and Sapatnekar, S. 2006. Statistical timing analy-
sis with correlated non-gaussian parameters using independent
component analysis. In Design Automation Conference, 2006
43rd ACM/IEEE, 155–160. IEEE.
Sinha, D.; Shenoy, N. V.; and Zhou, H. 2005. Statistical gate
sizing for timing yield optimization. In Proceedings of the
2005 IEEE/ACM International conference on Computer-aided
design, 1037–1041. IEEE Computer Society.
Visweswariah, C.; Ravindran, K.; Kalafala, K.; Walker, S. G.;
Narayan, S.; Beece, D. K.; Piaget, J.; Venkateswaran, N.; and
Hemmett, J. G. 2006. First-order incremental block-based sta-
tistical timing analysis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 25(10):2170–2180.

Xiong, J.; Zolotov, V.; Venkateswaran, N.; and Visweswariah,
C. 2006. Criticality computation in parameterized statistical
timing. In Proceedings of the 43rd annual Design Automation
Conference, 63–68. ACM.
Xiong, J.; Zolotov, V.; and Visweswariah, C. 2008. Incremental
criticality and yield gradients. In Proceedings of the conference
on Design, automation and test in Europe, 1130–1135. ACM.
Xu, X.; Lu, Q.; Wang, T.; Liu, J.; Zhuo, C.; Hu, X. S.; and Shi,
Y. 2017. Edge segmentation: Empowering mobile telemedicine
with compressed cellular neural networks. In Proceedings of
the 36th International Conference on Computer-Aided Design,
880–887. IEEE Press.
Xu, X.; Ding, Y.; Hu, S. X.; Niemier, M.; Cong, J.; Hu, Y.; and
Shi, Y. 2018a. Scaling for edge inference of deep neural net-
works. Nature Electronics 1(4):216.
Xu, X.; Lu, Q.; Yang, L.; Hu, S.; Chen, D.; Hu, Y.; and Shi,
Y. 2018b. Quantization of fully convolutional networks for
accurate biomedical image segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition. IEEE.
Xu, X.; Zhang, X.; Yu, B.; Hu, X. S.; Rowen, C.; Hu, J.; and
Shi, Y. 2018c. Dac-sdc low power object detection challenge
for uav applications. arXiv preprint arXiv:1809.00110.
Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; and Huang, T. 2016. Unit-
box: An advanced object detection network. In Proceedings of
the 2016 ACM on Multimedia Conference, 516–520. ACM.
Zhu, X.; Wang, Y.; Dai, J.; Yuan, L.; and Wei, Y. 2017. Flow-
guided feature aggregation for video object detection. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, volume 3.

