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Cellular neural networks (CeNNs) have been widely adopted in image processing tasks. Recently,
various hardware implementations of CeNNs have emerged in the literature, with Field Programmable
Gate Array (FPGA) being one of the most popular choices due to its high flexibility and low time-
to-market. However, CeNNs typically involve extensive computations in a recursive manner. As
an example, to simply process an image of 1920x1080 pixels requires 4-8 Giga floating point
multiplications (for 3x3 templates and 50-100 iterations), which needs to be done in a timely manner
for real-time applications. To address this issue, in this paper we propose a compressed CeNN
framework for efficient FPGA implementations. It involves various techniques such as incremental
quantization and early exit, which significantly reduces computation demands while maintaining an
acceptable performance. Particularly, incremental quantization quantizes the numbers in CeNN
templates to powers of two, so that complex and expensive multiplications can be converted to simple
and cheap shift operations, which only require a minimum number of registers and logical elements
(LEs). While similar concept has been explored in hardware implementations of Convolutional
Neural Networks (CNNs), CeNNs have completely different computation patterns which require
different quantization and implementation strategies. Experimental results on FPGAs show that
incremental quantization and early exit can achieve a speedup of up to 7.8x and 8.3x, respectively,
compared with the state-of-the-art implementations, while with almost no performance loss with four
widely-adopted applications. We also discover that different from CNNs, the optimal quantization
strategies of CeNNs depend heavily on the applications. We hope that our work can serve as a
pioneer in the hardware optimization of CeNNs.
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1 INTRODUCTION

Cellular Neural Networks (CeNNs) can model the working principles of many sensory parts
of human brains. Different from Convolutional Neural Networks (CNNs) [36][31] which are
most powerful in classification related tasks, CeNNs are generally good at various image
processing areas such as noise cancellation [15], edge detection [6], path planning [9] and
segmentation [5]. Due to the complex nature of these tasks and the associated real-time
requirements in many applications, hardware implementations of CeNNs have remained an
active research topic in the literature.

The structure of CeNNs makes them a natural fit for analog implementations. Many studies
exist along this direction [8][23][17][1]. The advantages of analog implementations include
high performance with an extremely fast convergence rate [37][32][33] and the convenience
of integrating them into image sensors for direct processing of captured data. However, these
analog implementations suffer from Input/Output (I/O) and data precision problems. First,
they require that each input corresponds to a unique neuron cell, resulting in too many I/O
ports. For example, recent implementation [1] can only support 256×256 pixels at its most,
which is far from the processing requirement of mainstream images, e,g., 1920×1080 pixels.
Second, analog circuits are prone to noise, which limit the output precision to 7 bits or below
[38]. As a result, analog implementation cannot even process regular 8-bit gray images.

In view of the above issues, digital implementations of CeNNs have been proposed, where
data is quantized with approximation. Tens to hundreds of iterations are needed in the
discretized process and as a result, the computational complexity of digital CeNNs is very
high. For example, to process an image of 1920x1080 pixels requires 4-8 Giga operations
(for 3×3 templates and 50-100 iterations), which needs to be done in 40 ms or below for
real-time video streaming.
To tackle the computation challenge, CeNN accelerations on digital platforms such as

ASICs [14][16], GPUs [21] and FPGAs [2][20][18][38][39][19] have been explored, with FPGA
among the most popular choices due to its high flexibility and low time-to-market. The
work [2] presented a baseline design with several applications, while the study [20] took
advantage of reconfigurable computing for CeNNs. Recently, the CeNN implementation
for binary images was demonstrated [19]. Expandable and pipelined implementations were
achieved on multiple FPGAs [18]. Taking advantage of the structure in [18], the work [38]
implemented a high throughput real-time video streams system, which is further improved
to be a complete system for video processing [39]. All the three works share the same
architecture for CeNN computation. Due to the large number of multiplications needed in
CeNNs, the limited quantity of embedded multipliers in an FPGA become the bottleneck
for further improvement. For example, in work [18] 95%-100% of the embedded multipliers
are used. On the other hand, it is interesting to note that the utilization rates of LEs
and registers are only 5% and 2%, respectively, which is natural to expect as not many
logic operations are needed. However, in a mainstream FPGA, LEs and registers count for
significantly larger portion of the total programmable resources than embedded multipliers.
For example, LEs and registers occupy 95.4% of the core area while embedded multipliers
only 4.6% for a EP3LS340 FPGA [29]. Such an unbalanced resource utilization apparently
cannot attain the best possible speed of the CeNN being implemented, and an improved
strategy is strongly desired.
A naive approach for potential improvement is to use LEs and registers to implement

additional multipliers. This technique, although straightforward, is very inefficient due
to the high cost associated. For example, it takes 676 LEs and 486 shift registers to
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implement an 18-bit multiplier. For an XC4LX25 FPGA, all the LEs and registers can
only contribute 42% additional multipliers. Apparently, such an approach will not lead to
significant improvement and we try to address the problem through an alternative approach,
i.e., by completely eliminating the need of multipliers. From basic boolean algebra, we know
that the multiplication of any number with powers of two can simply be done with logic
shift, which only requires a small number of LEs and registers to achieve. Inspired by this,
we can quantize the numbers in CeNN templates to powers of two, so that we can make full
use of the abundant LEs and registers in FPGAs. An extra benefit from this approach is
that LEs and registers are much more flexible for placement and routing, leading to higher
clock frequencies. While this can lead to significantly higher resource utilization rate and
reduced computational complexity, many interesting questions still remain. For example, how
would such quantizations affect the final CeNN accuracy? What is the impact of different
quantization strategies? Note that quantization to powers of two has been explored in the
context of CNNs [40], but as detailed in Section 2.3, the difference in computation structures
between CeNNs and CNNs warrants a separate investigation for CeNNs. And indeed, we
figure out that the answers to these questions are different for the two.

Another feature of CeNN is that the output of each neuron changes gradually over time (or
iteration times for discrete approximation). It should be noted that though the computation
is performed in analog circuit for CeNN, its corresponding discrete approximation performed
on FPGAs has the same shape. Thus, for specific applications, we can complete CeNN
computations earlier than general computations with an acceptable performance.
In this paper we present a compressed CeNN framework for computation reduction in

CeNNs [34][35]. Particularly, we systematically put forward two optimizations: incremental
quantization and early exit. Incremental quantization contains iterative procedures including
parameter partition, parameter quantization, and re-training. We propose five different
strategies including random strategy, pruning inspired strategy, weighted pruning inspired
strategy, nearest neighbor strategy, and weighted nearest neighbor strategy for incremental
quantization. Out of the five only pruning-inspired strategy and random strategy have been
adopted in incremental quantization of CNNs [40] due to the differences in their computation
patterns. Early exit can fulfill the computation earlier than general computation with
almost no accuracy loss. We have conducted extensive experiments with four widely
used applications to evaluate the proposed framework. We then implement these quantized
CeNNs on FPGAs with multiplications realized by shift operations. Based on CeNN template
structures, sparsity-induced and repetition-induced optimizations for quantized templates
are also exploited for situations where resources are extremely limited. Experimental results
on FPGAs show that incremental quantization and early exit can achieve a speedup of up
to 7.8x and 8.3x, respectively, compared with the state-of-the-art implementations, while
with almost no performance loss with four widely-adopted applications.

The remainder of the paper is organized as follows. Section 2 introduces backgrounds and
motivation of the paper. The proposed compressed CeNN framework and the optimized
hardware implementation are presented in Section 3. Experiments and discussion are provided
in Section 4 and concluding remarks are given in Section 5.

2 PRELIMINARIES

In this section, we first introduce the mathematical details of CeNNs, followed by template
learning algorithms which is used to train CeNNs. Particularly, a widely-used template
learning algorithm, Particle Swarm Optimization (PSO)[13] is presented in detail which is
adopted in this paper.
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2.1 Cellular Neural Networks

Different from the prevalent CNNs superior for classification tasks, CeNN model is inspired
by the functionality of visual neurons, and a mass of neuron cells are connected with
neighbouring ones. Only adjacent cells can interact directly with each other. This is a
significant advantage for hardware implementation, resulting in much less routing complexity
and area overhead. CeNNs are superior at image processing tasks that involves sensory
functions, such as noise cancellation, edge detection, path planning, segmentation, etc. For
the widely used 2D CeNN with space-invariant templates, the dynamics of each cell state
with an M×N rectangular cell array [3] are as follows:

𝑥̇𝑖,𝑗(𝑡) = −𝑥𝑖,𝑗(𝑡) +
𝑁∑︁

𝑘,𝑙=−𝑁

(𝐴𝑘,𝑙(𝑡)𝑦𝑖+𝑘,𝑗+𝑙(𝑡) +𝐵𝑘,𝑙(𝑡)𝑢𝑖+𝑘,𝑗+𝑙(𝑡)) + 𝐼(𝑡), (1)

𝑦𝑖,𝑗(𝑡) = 𝑓(𝑥𝑖,𝑗(𝑡)) = 0.5× (|𝑥𝑖,𝑗(𝑡) + 1| − |𝑥𝑖,𝑗(𝑡)− 1|), (2)

where 1 ≤ 𝑖 ≤ 𝑀 , 1 ≤ 𝑗 ≤ 𝑁 , 𝐴𝑘,𝑙(𝑡) is the feedback coefficient template, 𝐵𝑘,𝑙(𝑡) is the input
coefficient template, 𝐼(𝑡) is the bias, and 𝑥𝑖,𝑗(𝑡), 𝑦𝑖+𝑘,𝑗+𝑙(𝑡) and 𝑢𝑖+𝑘,𝑗+𝑙(𝑡) are the state,
output and input of the cell, respectively. Note that 𝐴𝑘,𝑙(𝑡), 𝐵𝑘,𝑙(𝑡) and 𝐼(𝑡) are time-variant
templates, and 𝑡 can be removed when time-invariant templates are used. For efficient
implementation on a digital platform (e.g., CPU, GPU, FPGA), discrete approximation of
CeNN is obtained by applying Euler approximation as shown in Equations 3, 4 and 5.

𝑥𝑖,𝑗(𝑡) ∼= (𝑥𝑖,𝑗(𝑛+ 1)− 𝑥𝑖,𝑗(𝑛))/∆𝑡. (3)

𝑥𝑖,𝑗(𝑛+ 1) = 𝑥𝑖,𝑗(𝑛) + ∆𝑡(−𝑥𝑖,𝑗(𝑛) + 𝐼(𝑛) +
𝑁∑︁

𝑘,𝑙=−𝑁

(

𝐴𝑘,𝑙(𝑛)𝑦𝑖+𝑘,𝑗+𝑙(𝑛) +𝐵𝑘,𝑙(𝑛)𝑢𝑖+𝑘,𝑗+𝑙(𝑛))).

(4)

𝑦𝑖,𝑗(𝑛) = 𝑓(𝑥𝑖,𝑗(𝑛)) = 0.5× (|𝑥𝑖,𝑗(𝑛) + 1| − |𝑥𝑖,𝑗(𝑛)− 1|). (5)

Delayed CeNN is a special type of CeNN described by adding
∑︀𝑁

𝑘,𝑙=−𝑁 (𝐷𝑖,𝑗(𝑛)𝑔(𝑥𝑘,𝑙(𝑛),

𝑦𝑘,𝑙(𝑛), 𝑢𝑘,𝑙(𝑛)) to Equation 4, where 𝑔 is usually a piece-wise constant function. Delayed
CeNN will also be considered in this paper when the effectiveness of incremental quantization
is discussed. Please refer to [3] for details. For the mainstream image size with 1920×1080
pixels, the total complexity is 1920×1080×39×100=8.1×109 operations with 100 iterations
(19 multiplications and 20 additions in each iteration). This warrants algorithms to speedup
the computations.

2.2 Template Learning Algorithm and PSO Algorithm

Template learning is a widely studied and applied method to find satisfactory templates
for CeNN-based applications, in which Genetic Algorithm (GA)[28] and Particle Swarm
Optimization (PSO)[13] are two representatives. PSO is adopted in this paper, while GA
and other template learning method are also compatible with the framework to be proposed.
PSO finds solutions in a heuristic way by searching the solution space with multiple

particles (swarm of potential solutions). In each iteration, PSO performs position update and
object function calculation. Inspired by the social behavior of animals, the position update of
each particle is affected by its past best position and the position of the current global best
position as depicted by Equation 6, where 1 ≤ 𝑖 ≤ 𝑁 , 1 ≤ 𝑑 ≤ 𝐷, 𝑁 is the size of particles,
𝐷 is the dimension of each particle, 𝑐1 and 𝑐2 are the acceleration coefficients, and 𝑟1 and
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Fig. 1. Motivation illustration: (a) CeNN template for binary image noise cancellation application, (b)
early exit in CeNN computations.

𝑟2 are random numbers with uniform distribution. 𝑝𝑖(𝑛+ 1) and 𝑝𝑖(𝑛) are the positions of
the 𝑖th particle in iteration 𝑛 and 𝑛+ 1, respectively. 𝑝𝑏𝑛 is the best position that the 𝑖th
particle ever searches, and 𝑔𝑏 is the current best position among all particles. Inertia weight
𝑤 controls the balance of the search algorithm between exploration and exploitation. A
bound of [𝑚𝑖𝑛𝑑, 𝑚𝑎𝑥𝑑] is introduced for 𝑝𝑖,𝑑 to limit the solution space. The object function
for particles taking positions as input is designed according to applications.

𝑝𝑖,𝑑(𝑛+ 1) = 𝑝𝑖,𝑑(𝑛) + {𝑤 × 𝑣𝑖,𝑑(𝑛) + 𝑐1𝑟1 × (𝑝𝑏𝑖,𝑑−
𝑝𝑖,𝑑(𝑛)) + 𝑐2𝑟2 × (𝑔𝑏𝑑 − 𝑝𝑖,𝑑(𝑛))}.

(6)

2.3 Motivation

While hardware oriented memory/computation compression and optimization of CNNs
have been extensively studied recently [4][11][30][22][25][40], little has been explored for
CeNNs where memory consumption is not a problem and the focus is only on computational
complexity.
The main difference between CeNNs and CNNs is that in CeNNs the parameters are

coupled. The weight values in a CNN tend to be all unique. However, in CeNNs some
parameters share the same values. For example, in Fig. 1(a), a CeNN template (template B)
for binary image noise cancellation [15] is shown. Only three different values exist for the
nine parameters. As such, in [40] the weights of CNNs are incrementally quantized in an
order simply based on their magnitudes (pruning-inspired strategy). The same strategy may
not work well for CeNNs, as a parameter with small magnitude may repeat multiple times
thus playing a more important role than a parameter with a large magnitude but appearing
only once. Furthermore, the training process of CNNs is mathematically optimal, while that
of CeNNs is heuristic. This will also influence the performance of quantization strategies.
Finally, the sparsity and repetition existing in CeNN templates provide some additional
opportunity for further improvement when implemented in hardware.

Another difference that should be noted is that the output of each neuron changes gradually
over time (or iteration times for discrete approximation). As shown in Fig. 1(b), the value
of four selected neurons varies with time. It should be noted that though the computation is
performed in analog fashion for CeNN, its corresponding discrete approximation performed
on FPGAs has the same shape. We can observe that there are many neurons (neuron A, C,
and D) with a relatively shorter convergence time than others (Neuron B), which means
early exit can be performed as the later values will not change over time. Thus, during a
CeNN system evolution, significant amount of computation can be eliminated so as to save
energy without sacrificing accuracy.
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Fig. 2. The flowchart of incremental quantization.
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Fig. 3. An example of incremental quantization: in each iteration, parameter partition, parameter
quantization and incremental re-training are performed sequentially. Green cells represent quantized
parameters.

3 COMPRESSED CENN FRAMEWORK AND HARDWARE IMPLEMENTATION

In this section, we present the compressed CeNN framework followed by the details of the
hardware implementation.

3.1 Incremental Quantization

Incremental quantization is an iterative process as shown in Fig. 2. Each iteration completes
three tasks: parameter partition, parameter quantization, and incremental re-training. We
assume that as a starting point, we have all parameters in the original templates before
quantization well trained. An illustrative example of the process is shown in Fig. 3 to
facilitate understanding.

3.1.1 Parameter partition. This task selects a subset of parameters not yet quantized
(un-quantized parameters) to perform quantization. Two knobs exist in this task: parameter
priority and batch size.

For the first knob, the pruning-inspired (PI) strategy has been well explored in quantization
of CNNs [40], based on the consideration that weights with larger magnitudes contribute
more to the result and thus should be quantized first. However, the parameters in CeNNs
have some unique characteristics which have been discussed in Section 2.3. In order to tackle
the problem, we propose a nearest neighbor (NN) strategy and a weighting method for the
first knob. The combined weighted nearest neighbor algorithm takes the number that a
parameter appears in the template, defined as its repetition quantity (rq) as the reciprocal
of the weight, and uses the difference between the parameter and its nearest power-of-two
as distance to perform a weighted NN algorithm (WNN). The detail explanation of WNN
algorithm is shown in Algorithm 1. Other combinations such as weighted pruning-inspired
(WPI) strategy adopt the same weighting method but with PI to form WPI. A total of five
strategies PI, WPI, NN (WNN with all weights set to 1), WNN and a random strategy
(RAN) are compared in the experimental section.

For the second knob, batch size is the number of parameters selected in each iteration,
which will affect re-training speed and quality. We propose to use two batch sizes, constant
and log-scale. The former selects the same number of parameters in each iteration, while
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the latter picks a fixed percentage from the remaining un-quantized parameters, rounded to
the nearest integer. Compared with constant batch size, log-scale batch size quantizes more
parameters in the first several iterations and fewer towards the end.

ALGORITHM 1: Weighted nearest neighbor strategy

Input: un-quantized parameters 𝑢𝑞𝑖, repeat quantity, 𝑟𝑞𝑖, selected quantity, 𝑁 , 1 ≤ 𝑖 ≤ 𝑛, 𝑛, the
number of un-quantized parameters
Output: the most important 𝑁 parameters
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = 𝑙𝑜𝑔2 |(𝑢𝑞)|; // get the power of the absolute value of the un-quantized parameters
for 𝑖 = 1 to 𝑛 do

𝑚𝑑 = (2𝑓𝑙𝑜𝑜𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)) + 2𝑓𝑙𝑜𝑜𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)+1))/2;
if 𝑚𝑑 > |(𝑢𝑞(𝑖))| then

𝑛𝑛𝐷𝑖𝑠𝑡(𝑖) = |(𝑢𝑞(𝑖))| − 2𝑓𝑙𝑜𝑜𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖));
else

𝑛𝑛𝐷𝑖𝑠𝑡(𝑖) = 2𝑓𝑙𝑜𝑜𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖))+1 − |(𝑢𝑞(𝑖))|;
end if

end for
𝑤𝑛𝑛𝐷𝑖𝑠𝑡 = 𝑛𝑛𝐷𝑖𝑠𝑡/𝑟𝑞;
sort 𝑤𝑛𝑛𝐷𝑖𝑠𝑡 in ascending order;
output the first 𝑁 parameters;

3.1.2 Parameter quantization. Before parameter quantization, the bit width should be
defined first according to applications. Note that there are millions of parameters for
CNN, and short bit width is always appreciated considering memory and computational
consumption. However, CeNN usually has tens to hundreds of parameters (time-variant
templates have more parameters than time-invariant templates), and bit width has no
significant impact on memory consumption. In addition, with power-of-two conversion
multiplications can be done with logic shifts, and bit width will also have little impact
on computation complexity. The only impact it will have is on the resource utilization of
multipliers.
Suppose the quantization set is designed as depicted in Equation 7, where 𝑘 and 𝑚

indicate the range of quantization. The corresponding bit width 𝑏𝑤 is calculated as shown
in Equation 8, where the extra one bit is the sign bit.

𝑞𝑠 = {±(2𝑘, ., 2𝑝, ., 2𝑚), 0}, 𝑘 ≤ 𝑝 ≤ 𝑚, 𝑝, 𝑘,𝑚 ∈ Z. (7)

𝑏𝑤 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔[𝑙𝑜𝑔2(2× (𝑚− 𝑘 + 1) + 1)] + 1. (8)

With the quantization set, a parameter 𝑢𝑞(𝑖) is quantized as shown in Equation 9. When
the absolute value of a parameter is smaller than 2−𝑘−1, it will become zero after quantization
and get pruned. Lower bit width can prune more parameters, at the cost of accuracy loss.

𝑢𝑞(𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑝 if 3× 2𝑝−2 ≤ |𝑢𝑞(𝑖)| < 3× 2𝑝−1;

𝑘 ≤ 𝑝 ≤ 𝑚;

2𝑚 if |𝑢𝑞(𝑖)| ≥ 2𝑚;

0 if |𝑢𝑞(𝑖)| < 2−𝑘−1.

(9)
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Fig. 4. Flowchart of early exit.

3.1.3 Incremental Re-training Algorithm. Usually, re-training algorithm is an optimal
problem as shown in Equation 10, where 𝑃 is the set of all the parameters. In incremental
re-training algorithm, the optimal problem is revised as shown in Equation 11, where 𝑈
and 𝑄 are the sets of un-quantized and quantized parameters, respectively. 𝑎𝑖 and 𝑏𝑖 are
the lower and upper bounds for both 𝑃𝑖 and 𝑈𝑖, respectively. Note that 𝑃 = 𝑄 ∪ 𝑈 , and
𝑈 ∩𝑄 = Ø. In each iteration, a subset of 𝑈 will be quantized and added to 𝑄.

𝑓 = 𝑚𝑖𝑛 𝑜𝑏𝑗(𝑃 ), 𝑠.𝑡. 𝑃𝑖 ∈ [𝑎𝑖, 𝑏𝑖], 0 ≤ 𝑖 ≤ |𝑃 |. (10)

𝑓 = 𝑚𝑖𝑛 𝑜𝑏𝑗(𝑈,𝑄), 𝑠.𝑡.𝑈𝑖 ∈ [𝑎𝑖, 𝑏𝑖], 0 ≤ 𝑖 ≤ |𝑈 |. (11)

𝑄 will be fixed during the re-training process and only 𝑈 is used for space searching. After
multiple iterations, all the required parameters are quantized. It should be noted that the
bias 𝐼(𝑛) in Equation 4 for CeNN is not required to be quantized as it is not involved in
multiplication. Therefore, another re-training iteration is required for the optimal bias when
all the required parameters are quantized.

3.2 Early Exit

Early exit exploits the convergence character during the analog computation of CeNN: the
output has a relatively larger variance in the early runtime (or first several iterations for
digital approximation) and a much smaller variance in the afterward runtime. In this paper,
we adopts an experimental method to perform early exit as shown in Fig. 4. Note that the
performance is determined by specific applications. In this method, the possible iteration
times will be explored from a large value to one, and the iteration time with an acceptable
performance will be extracted.

3.3 Efficient Hardware Implementations

We base our work on the state-of-the-art FPGA CeNN implementations [18][38][39], which is
expandable, highly parallel and pipelined. The basic element of the architecture is the stage
module which handles all the processes in one iteration corresponding to Equation 4 for
1 ≤ 𝑖 ≤ 𝑀 , 1 ≤ 𝑗 ≤ 𝑁 . Multiple stages are connected sequentially for multiple iterations to
form a layer, which processes the input in a pipelined manner. Furthermore, multiple layers
can be connected sequentially for more complex processing or be distributed in parallel for
a higher throughput. Note that First In First Out (FIFO) are used between adjacent stages
to store the temporary results of each stage (or each iteration), and they are configured as
single-input multiple-output memories. Please refer to FPGA implementations in [18][38]
for more details.

Our efficient hardware implementation focuses on the optimization of the stage design as
shown in Fig. 5. Two optimizations are performed: multiplication simplification and data
movement optimization. First, with incremental quantization, simplification can be achieved
by replacing multiplications with shift operations. The detailed hardware implementation
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Fig. 5. Architecture of the optimized stage design.

Table 1. Comparison of resource utilization between 18-bit multipliers implemented using shifter modules
of various configurations 𝑆1(𝑚) and 𝑆2(𝑚) (with different 𝑚 as defined in Equation 7, 𝑘=-𝑚 for 𝑆1,
and 𝑘=0 for 𝑆2) and a direct implementation of an 18-bit multiplier using LEs and registers.

Module 𝑆1(0) 𝑆1(1) 𝑆1(2) 𝑆1(3) 𝑆1(4) 𝑆1(5) 𝑆2(7) 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

LEs 39 44 50 80 109 105 80 676
Registers 39 42 45 47 50 52 75 486

will be discussed in Section 3.3.1. Second, when FPGA resource is extremely limited
(e.g. for low-end FPGAs), data movement optimization can be performed utilizing the
sparsity and repetition in CeNN templates. As will be discussed later in Section 3.3.2, in
many applications CeNN templates naturally involves zero or repeated parameters. With
incremental quantization, more zeros are yielded leading to higher sparsity and the small
quantization set introduces a larger number of repetitions. Data movement optimization can
minimize the number of computations needed. The details will be discussed in Section 3.3.2.

The optimized stage can be configured for both time-invariant templates and time-variant
templates. Note that the FPGA implementation [38] is dedicated to CeNN with time-
invariant templates, while [18] is for time-variant. The 𝑇𝑖𝑚𝑒𝑉 𝑎𝑟𝑖𝑎𝑛𝑡 part in Fig. 5 is specific
for time-variant templates, and can be eliminated in the configuration for time-invariant
ones.

3.3.1 Shifter Module. In Fig. 5, shifter 𝑆1 is for multiplications in CeNNs and 𝑆2 is
for discrete approximation involved with ∆𝑡 in Equation 4. Usually ∆𝑡 is very small, and
the hardware implementation of 𝑆2 in this paper is designed to support ∆𝑡=2𝑠, where
−7 ≤ 𝑠 ≤ 0, 𝑠 ∈ Z. Note that when ∆𝑡 is configured to 20 or 1, the computation is
transformed to discrete CeNN [7].
Table 1 provides an illustrative comparison of resource utilization between multipliers

implemented using shifter modules of various configurations and a direct implementation of
multiplier using LEs and registers. It can be noticed that the shifter module consumes much
fewer resources than the general implementation, such that more multiplications can be
placed on FPGAs for higher performance and speed. It should be pointed out that multiple
shifters can be adopted in the 2D convolutional module.

3.3.2 Data Scheduler Module. Data scheduler module exploits the sparsity and repetition
of parameters in CeNN templates. We analyzed 87 tasks from 79 applications [12], and
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Fig. 6. Illustration of (a) sparsity and (b) repetition characteristic with 174 CeNN templates.
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totally 174 templates are examined (each task has two templates: template 𝐴 and template
𝐵). All the templates are 2D 3×3 each having nine parameters. The corresponding sparsity
and repetition are shown in Fig. 6(a). In Fig. 6(a), we discover that a majority of templates
have zero values, and more than half have only three or less non-zero parameters. Therefore,
ignoring multiplications with zeros will give a significant improvement in efficiency.

Fig. 6(b) depicts the histogram of the parameter repetition in all the 174 templates. We
can see that in most of the templates, about 5-6 parameters are repeated values. With
repeated parameters, we can also take advantage of the associative law for repetition-induced
optimization, e.g., 𝑎1 × 𝑏1 + 𝑎1 × 𝑏2 + 𝑎1 × 𝑏3 = (𝑏1 + 𝑏2 + 𝑏3) × 𝑎1, and hence three
multiplications are optimized to only one.
Note that these optimizations seem to be straightforward and automatic in software

synthesis, but for hardware implementations detailed attention is needed. An illustration of
optimization with sparsity and repetition is shown in Fig. 7. With sparsity-induced opti-
mization, we only take the non-zero parameters into consideration, and three multiplications
can be eliminated. An adder (only consumes 10 LEs in the design) is utilized to calculate
the sum 𝐴 of 𝑏2, 𝑏4 and 𝑏6 in parallel with the shifter module. The shifter module calculates
𝑏5 × 𝑎2, 𝑏9 × 𝑎3, and 𝑏8 × 𝑎1 in the first three cycles, and computes 𝐴 × 𝑎1 in the forth.
Thus, totally it takes four cycles rather than nine cycles to calculate Equation 8. Specifically,
sparsity-induced optimization reduces the computation time from nine cycles to six, and
repetition-induced optimization reduces it from six to four.

The power of sparsity-induced and repetition-induced optimizations varies with different
applications. Note that if the number of shifters adopted in the 2D convolution module is
larger than one, repetition-induced optimization can be eliminated as it contributes much
less compared with the shifters. If the number of shifters equals that of the coefficients which
is also the situation to achieve the highest throughput, repetition-induced optimization can
also be eliminated as all multiplications can be processed in only one cycle. Therefore, the
two optimizations are only for situations with very limited resources.

4 EXPERIMENTS

In this section, we first evaluate the performance of incremental quantization and early exit
discussed in Section 3. Then we implement the quantized CeNNs on FPGAs and compare
their speed with state-of-the-art works.
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Table 2. Configuration of PSO algorithm.

𝑁 𝑐1 𝑐2 𝑤 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑖𝑛𝑑 𝑚𝑎𝑥𝑑

10 1.4 1.2 0.8 500 −2𝑚 2𝑚

4.1 Performance Evaluation

We choose four applications, i.e., binary image noise cancellation, grey image noise cancel-
lation, texture segmentation, and medical image segmentation. A total of 10 incremental
quantization strategies are evaluated: five partition strategies (RAN, PI, WPI, NN (WNN
with all weights set to 1), and WNN) in combination with two batch sizes (constant and
log-scale). For compact presentation, we use postfix -C and -L to denote constant and
log-scale batch sizes, respectively. For constant batch size, we set the size to 20% of the total
parameters. While for log-scale batch size, we set it to half of the remaining un-quantized
parameters. We discuss five quantization set sizes with 𝑚 =0, 1, 2, 3, 4 and 𝑘 = −𝑚 (see
Equation 7). The evaluations of the three applications are presented in Sections 4.1.1-4.1.4,
and the detailed result discussion is given in Section 4.1.5. The parameters of PSO algorithm
in Equation 6 is shown in Table 2. The object function designed according to applications
will be discussed in the following sections.

4.1.1 Binary image noise cancellation. The objective function for binary image noise
cancellation in PSO re-training is shown in Equation 12, where 𝑜𝑢𝑡𝑝𝑢𝑡 and 𝐼𝑑𝑒𝑎𝑙- 𝑂𝑢𝑡𝑝𝑢𝑡
are output images of CeNN processing on input images with noise and desired output
images, respectively, and 𝑡 is the number of training pairs. The pattern structures of
the 3×3 templates 𝐴 and 𝐵 are as follows: 𝐴 = {0, 𝑎0, 0; 𝑎0, 𝑎1, 𝑎0; 0, 𝑎0, 0}, and 𝐵 =
{𝑎2, 𝑎3, 𝑎2; 𝑎3, 𝑎4, 𝑎3; 𝑎2, 𝑎3, 𝑎2}. The training images are corrupted with salt and pepper
noise as shown in Fig. 8, where different levels of salt and pepper noise are added to the
ideal input image. The test images are from Hlevkin test images collection [10], and gray
images are transformed to binary format with contaminations of 5%, 10%, 15% and 20% salt
and pepper noises. The peak signal-to-noise ratio (PSNR) is used to evaluate the quality of
the processed images.

𝑜𝑏𝑗 =

𝑡∑︁
𝑖=1

(𝑜𝑢𝑡𝑝𝑢𝑡𝑖 − 𝐼𝑑𝑒𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑖)
2. (12)

We fix the quantization size using 𝑚 = 2 and 𝑘 = −𝑚, and evaluate all 10 incremental
quantization frameworks. The results are depicted in Fig. 9(a). From the figure we can
observe that the quantized templates achieve similar PSNR compared with the original
template without quantization. The lowest PSNR is only 3 dB lower than that with the
original templates. Interestingly, the highest PSNR is achieved with NN-L strategy, which
has an even better performance than the original template. Note that generally PI strategy
achieves the best performance for CNNs [40]. However, NN-L strategy obtains the best
performance for CeNN in binary image noise cancellation application. Early exit is performed
with the NN-L strategy as shown in Fig. 9(c). It can be noted that the performance increases
very quickly in the first several iterations, and remains almost constant when the iteration
times is lager than a threshold. Observe that a speedup of 8.3x is achieved with only 1%
performance loss. The optimal templates (NN-L strategy) and the original templates are
shown in Fig. 10, and their detailed comparisons on the 20 test images are also presented.
It can be observed that the PSNR of the optimal templates remains higher than that of
the original template across all the images. The impact of batch sizes is presented in Fig.
9(b) with the optimal partition NN-L. No distinct tendency exists between PSNR and 𝑚,
and note that even with 𝑚 = 0 corresponding to the quantization set with only three values
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Fig. 8. Training images for binary image noise cancellation.
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Fig. 10. Performance comparison between the optimal quantized templates and the original templates for
binary image noise cancellation. The image ID and the image correspond as follows: (1, airfield),
(2, barbara), (3, boats), (4, bridge), (5, cablecar), (6, camera), (7, cornfield), (8, fingerprint), (9, flower),
(10, fruits), (11, girl), (12, goldhill), (13, lena), (14, man), (15, monarch), (16, pens), (17, pepper), (18,
sailboat), (19, soccer), (20, yacht).

(-1, 0, 1), we can still achieve a higher PSNR than that with the original templates without
quantization.

4.1.2 Grey image noise cancellation. The configuration for grey image cancellation is
the same as that for binary image noise cancellation. The pattern structures of the 3×3
Delayed CeNN templates 𝐴, 𝐵 and 𝐷 are as follows: 𝐴 = {0, 0, 0; 0, 𝑎0, 0; 0, 0, 0}, 𝐵 =
{𝑎1, 𝑎1, 𝑎1; 𝑎1, 𝑎1, 𝑎1; 𝑎1, 𝑎1, 𝑎1; }, and 𝐷 = {𝑎2, 𝑎2, 𝑎2; 𝑎2, 0, 𝑎2; 𝑎2, 𝑎2, 𝑎2; }. The training
images are shown in Fig. 11.
The same setting of quantization with binary image noise cancellation is used, and the

results are depicted in Fig. 12(a). From the figure we can note that the quantized templates
still achieve similar PSNR compared with the original template without quantization. The
lowest PSNR this time is only 1.5 dB lower than that with the original templates. The highest
PSNR is achieved with PI-L and WPI-L, both resulting in the same quantized template with
an even better performance than the original template. In this application, interestingly
the best strategy is PI-L, the same as that in CNNs. In Fig. 12(c), we can find that the
performance has the same trend with that in Section 4.1.1, and early exit for the PI-L
strategy can achieve a speedup of 5.6x with only 1% performance loss. The optimal templates
(PI-L/WPI-L strategy) with the highest PSNR and the original templates are shown in Fig.
13, and their detailed comparisons on the 20 test images are also presented. Note that the
optimal templates cannot always get a higher PSNR than the original templates for the 20
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Fig. 11. Training images for grey image noise cancellation.
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Fig. 13. Performance comparison between the optimal quantized templates and the original templates
for grey image noise cancellation. See the caption of Fig. 10 for details of image ID.

images. The impact of batch sizes is presented in Fig. 12(b) with the optimal partition PI-L.
Note that even with 𝑚 = 0 corresponding to the quantization set with only three values
(-1, 0, 1), we can still achieve a high PSNR which is about 5.2 dB lower than that with the
original templates.

4.1.3 Texture segmentation. The training and testing images are shown in Fig. 14. The
object function adopted from [27] is shown in Equations 13 and 14, where 𝑄𝑘 is the area
of the 𝑘th texture, 𝐺𝑘 is the average gray-scale of the 𝑘th texture in the output numbered
in ascending order of gray-level, and 𝑔𝑖,𝑗|𝑘 is the local average gray-level. A window size
of 35 × 35 is adopted to calculate 𝑔𝑖,𝑗|𝑘. The pattern structures of the 3×3 templates 𝐴
and 𝐵 are as follows: 𝐴 = {𝑎0, 𝑎1, 𝑎2; 𝑎3, 𝑎4, 𝑎5; 𝑎6, 𝑎7, 𝑎8}, and 𝐵 = {𝑎9, 𝑎10, 𝑎11; 𝑎12, 𝑎13
, 𝑎14; 𝑎15, 𝑎16, 𝑎17; }.

𝑜𝑏𝑗 = (1−𝑚𝑎𝑥
𝑘

(
1

𝑄𝑘

∑︁
𝑖,𝑗|𝑘

𝑒𝑘(𝑖, 𝑗))×𝑚𝑖𝑛
𝑘

(𝐺𝑘 −𝐺𝑘−1). (13)

𝑒𝑘(𝑖, 𝑗) =

{︃
0 if (𝐺𝑘−1 +𝐺𝑘)/2 < 𝑔𝑖,𝑗|𝑘 < (𝐺𝑘 +𝐺𝑘+1)/2;

1 else .
(14)

The same setting of quantization with the above two applications is used, and the results
are depicted in Fig. 15(a). From the figure we can observe that the quantized templates
achieve similar accuracy compared with the original templates without quantization. The
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Fig. 14. Training and testing images for texture segmentation.
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Fig. 15. Performance comparison between templates with various (a) strategies and (b) quantization
sizes 𝑚, and (c) performance of early exit with PI-L strategies for texture segmentation.
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Fig. 16. Performance comparison between the optimal quantized templates and the original templates
for texture segmentation.

lowest accuracy is about 16% lower than that with the original templates. The highest
accuracy is achieved with WPI-C and WPI-L, both resulting in the same quantized templates
with a better performance compared with the original templates. As shown in Fig. 15(c),
early exit with WPI-C/WPI-L can obtain a speedup of 1.2x with about 1% performance
loss. The optimal templates (WPI-C/WPI-L strategy) for the highest accuracy and the
original templates are shown in Fig. 16, and their detailed comparisons are also presented.
The impact of batch sizes is presented in Fig. 15(b) with the optimal partition WPI-L. Note
that even with 𝑚 = 0 corresponding to the quantization set with only three values (-1, 0, 1),
we can still achieve a high accuracy which is about 3.2% lower than that with the original
templates.

4.1.4 Medical Image Segmentation. The objective function for medical image segmentation
in PSO re-training is shown in Equation 15, where 𝑜𝑢𝑡𝑝𝑢𝑡 and 𝐼𝑑𝑒𝑎𝑙-𝑂𝑢𝑡𝑝𝑢𝑡 are output
images of CeNN processing on input images and desired output images, respectively, and
𝑡 is the number of training pairs, and 𝑎𝑟𝑒𝑎 is the product of the width and height of
the image. We also adopts the objective function as accuracy to evaluate the quality of
segmented images. The pattern structures of the 3×3 templates 𝐴 and 𝐵 are as follows:
𝐴 = {𝑎0, 𝑎1, 𝑎2; 𝑎3, 𝑎4, 𝑎3; 𝑎2, 𝑎1, 𝑎0}, and 𝐵 = {𝑎5, 𝑎6, 𝑎7; 𝑎8, 𝑎9, 𝑎8; 𝑎7, 𝑎6, 𝑎5}. The dataset
is from the mammographic image analysis society (MIAS) digital mammogram database
[26], and two images and its corresponding segmented results are selected as training images
as shown in Fig. 17, which is the of the same configuration with the work [24]. Totally
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Ideal output of AImage A Ideal output of BImage B

Fig. 17. Two selected images and their manually segmented images from MIAS database to train CeNN.
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Fig. 18. Performance comparison between templates with various (a) strategies and (b) quantization
sizes 𝑚, and (c) performance of early exit with WNN-C strategies for medical image segmentation.
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Fig. 19. Performance comparison between the optimal quantized templates and the original templates
for medical image segmentation.

119 test images are used in the experiment. Note that as there is no ideal output in the
MIAS database, the outputs of the template with double precision are regarded as the ideal
outputs.

𝑜𝑏𝑗 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡∑︁

𝑖=1

𝑎𝑏𝑠(𝑜𝑢𝑡𝑝𝑢𝑡𝑖 − 𝐼𝑑𝑒𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑖)/𝑎𝑟𝑒𝑎. (15)

As shown in Fig. 18(a), we can observe that the quantized templates achieve similar
accuracy compared with the original template without quantization. The lowest accuracy is
about 12% lower than that with the original templates. Interestingly, the highest accuracy is
achieved with WNN-C strategy, which is only 3% lower than that of the original templates.
It can be interesting in the future to study this in more detail and figure out a systematic
way to decide the optimal strategy. As shown in Fig. 18(c), a speedup of 5x are achieved
with only 1% accuracy loss for the WPI-L strategy.

The optimal templates and the original templates are shown in Fig. 19, and their detailed
comparisons on the 119 test images are also presented. It can be observed that the accuracy
of the optimal templates has very little accuracy loss compared with the original template
across almost all test images. The impact of batch sizes is presented in Fig. 18(b) with the
optimal partition WNN-C. The quantization set size has an interesting relationship with
the performance. First, even when the quantization set is only of three values (-1, 0, 1), the
quantized template can still achieve high accuracy Second, there exists an optimal 𝑚 which
gives the best performance and 𝑚=3 for medical image segmentation. Further increasing 𝑚
will not provide any performance gain.

4.1.5 Discussion. From the experiments on the four applications, it can be learned that
the proposed compressed CeNN framework can generally produce quantized templates with
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a similar or even higher performance compared with the original templates. The optimal
quantized templates for binary image noise cancellation and grey image noise cancellation can
get a PSNR improvement of 0.5dB and 0.1dB, respectively, while for texture segmentation,
the classification accuracy is improved by 3%.
The performances of the 10 quantization frameworks for the three applications vary.

It should be highlighted that unlike CNNs, the optimal strategy of CeNNs depends on
applications. In terms of parameter partition strategy, there is no clear winner that can
always beat the others, and NN-L, PI-L (or WPI-L), and WPI-L (or PI-L), WNN-C can
achieve the best templates for binary image noise cancellation, grey image noise cancellation,
texture segmentation, and medical image segmentation, respectively. It can be interesting in
the future to study this in more detail and figure out a systematic way to decide the optimal
strategy. In terms of batch size, log-scale seems to perform better than constant in most
cases.

The quantization set size has an interesting relationship with the performance. First, even
when the quantization set is only of three values (-1, 0, 1), the quantized template can still
achieve high performance, which sometimes is even better than the original template (e.g.
in binary image noise cancellation). Second, there exists an optimal 𝑚 which gives the best
performance. Further increasing 𝑚 will not provide any performance gain (e.g., in texture
segmentation) or may even result in performance loss (e.g. in gray image noise cancellation).
This is mainly due to that a proper 𝑚 will get the best balance between overfitting and
underfitting for the network. The value of this optimal 𝑚 depends on the detailed application
and the dataset, which will also be an interesting future work.

4.2 Speed Evaluation Using FPGAs

In previous section we have evaluated the performance of our incremental quantization
framework in terms of accuracy. In this section we will evaluate its speed when implemented
in FPGAs. For a fair comparison with existing works [18][38][39], we adopt the same
configurations of stages and try to place the maximum possible number of stages utilizing
our quantized templates. Note that all the three works share the same architecture for CeNN
computation. The performance of the implementation is evaluated by equivalent computing
capacity which is the product of number of stages and the computing capacity of each stage.
The proposed efficient hardware implementation is implemented on an XC4LX25 FPGA.
The data width of the input, state, and output (𝑢, 𝑥, and 𝑦) is configured to be 18 bits.
The widely-used template size 3×3 is adopted. Note that general CeNN is adopted for the
FPGA implementation, and delayed CeNN is not considered here. Time-variant templates
are configured. In the implementation, multiplication is achieved with embedded multipliers
(more specifically, DSP48 modules on XC4LX25 FPGAs) at first, and shifters are used when
there are no more available embedded multipliers. Considering the routability of FPGAs,
the utilization rate of LEs and registers are constrained to be no higher than 80%. Note
that since different quantization frameworks only affects the performance and do not show
significant difference in hardware resource utilization, in this part of experiments we simply
use WNN-L with m=5 and k=-5, and other frameworks should yield almost identical speed.
Note that for the same application, the iteration numbers of times are the same for fair
comparison.

Three configurations of 2D convolution are discussed: one, three and nine multipliers. In
Table 3, applying our quantization framework can lead to a 1.2x speedup with increased use
of LEs (by 17%) and registers (by 8%) This allows an additional 4 stages to be placed, with
a speedup of 1.2x.
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Table 3. Speed and resource utilization comparisons of the state-of-the-art work [39] and ours with
one multiplier/shifter in 2D convolution module, with sparsity-induced optimization and repetition-
induced optimization. The numbers in the brackets are the resource utilization rate.

Implementation
State-of-the-art
(1 Multiplier)

Ours
(1 Shifter)

Ours
(1 Shifter+
sparsity)

Ours
(1 Shifter+
repetition)

# of stages 24 28 28 24
LEs (×103) 14.6(60%) 18.7(77%) 18.7(77%) 18.4(76%)

Register(×103) 8.8(40%) 10.5(48%) 10.5(48%) 9.9(46%)
Embedded Multiplier 48(100%) 48(100%) 48(100%) 48(100%)

Clock Frequency (MHz) 353 331 331 322
Cycles per pixel 11 11 11 8

Speedup 1x 1.2x 1.2x 1.4x

Table 4. Speed and resource utilization comparisons of the state-of-the-art work [39] and ours with
three and nine multipliers/shifters in 2D convolution module. The numbers in the brackets are
the resource utilization rate.

Implementation
State-of-the-art
(3 Multiplier)

Ours
(3 Shifters)

State-of-the-art
(9 Multiplier)

Ours
(9 Shifters)

# of stages 6 16 2 7
LEs(×103) 3.8(15%) 19.6(80%) 1.4(5%) 18.2(76%)

Registers(×103) 2.1(10%) 6.5(30%) 0.6(2%) 3.6(17%)
Embedded Multiplier 48(100%) 48(100%) 46(95%) 48(100%)

Clock Frequency (MHz) 337 320 361 343
Cycles per pixel 5 5 1 1

Speedup 1x 2.6x 1x 3.5x

Table 5. Speed and resource utilization projections to high-end FPGAs of the state-of-the-art work [39]
and ours with nine multipliers/shifters in 2D convolution module. The numbers in the brackets are
the resource utilization rate.

Implementation VC7VX-980T VC7VX-585T Stratix V E Stratix V GS
# of stages 352 179 233 291
LEs(×103) 780(80%) 465(80%) 718(80%) 524(80%)

Registers(×103) 170(17%) 93(16%) 133(15%) 128(19%)
Embedded Multiplier 3600(100%) 1260(100%) 704(100%) 3926(100%)

Speedup 2.3x 3.3x 7.8x 1.7x

Further taking sparsity-induced optimization into consideration, a speedup of 1.8x is
achieved in the 2D convolution module with computations involving with template 𝐴 for
binary image noise cancellation. However, no sparsity exists in template B, and there is no
overall speedup, as sparsity-induced optimization can only yield speedup when sparsity exists
in both templates A and B. Therefore, the speedup still remain about the same. Yet after
the introduction of repetition-induced optimization, the speedup can be further increased to
1.4x with slightly reduced resource usage (due to the reduction of computations needed).
Note that these conclusions are application-specific. Similar conclusions reside with texture
segmentation. The proposed architecture achieves a little lower clock frequency due to the
high resource utilization making placement and routing relatively more difficult.
For the configuration of 2D convolution with multiple multipliers, sparsity-induced and

repetition-induced optimizations doing very limited optimizations with multiple multipliers
are not involved. As shown in Table 4, the the state-of-the-art work [39] has a very low
resource utilization (2%-15%) with LEs and registers. With the abundant resources, 10 and
5 more stages can be placed on FPGAs with shifters as a replacement of multipliers for
the implementation configured with three and nine multipliers, respectively, resulting in a
speedup of 2.6x and 3.5x.

As the CeNN architecture composed with stage modules are highly extensible, we make a
reasonable projections to high-end FPGAs to see how the resources available in an FPGA
affect the speedup. According to existing implementations on FPGAs and resource constraint
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of 80% LE and register utilization rate bound, the clock frequencies are assumed to be
the same in the comparison. The configuration of 2D convolution with nine multipliers is
adopted, which has the highest performance. We select four high-end FPGAs from Altera
and Xilinx with about 500,000 to 1,000,000 LEs. As shown in Table 5, our implementations
can achieve a speedup of 1.7x-7.8x. The highest speedup of 7.8x is due to the fact that the
Stratix V E FPGA has the highest rate of LEs and embedded multipliers.

5 CONCLUSIONS

In this paper, we propose a compressed CeNN framework for efficient hardware implemen-
tations, which includes two parts: incremental quantization and early exit. Incremental
quantization adopts an iterative procedure including parameter partition, parameter quanti-
zation, and re-training to produce templates with values being powers of two. We propose a
few quantization strategies based on the unique CeNN computation patterns. Thus, multi-
plications are transformed to shift operations, which are much more resource-efficient than
general embedded multipliers. Furthermore, based on CeNN template structures, sparsity-
induced and repetition-induced optimizations for quantized templates are also exploited for
situations where resources are extremely limited. Early exit can fulfill the computation ear-
lier than general computation with almost no accuracy loss. Experimental results show that
incremental quantization can achieve similar or even slightly better performance compared
with that using original templates without quantization, and a speedup of 1.2x-7.8x can be
achieved compared with the state-of-the-art FPGA implementations. Early exit is simple
but effective, which can achieve a speedup of 1.2x-8.3x with almost no accuracy loss. We
also discover that unlike CNNs, the optimal strategy of CeNNs depends on applications. We
will evaluate the performance of our method on complex and real applications as the future
work.
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