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Abstract. Congenital heart disease (CHD) is the leading cause of mor-
tality from birth defects, which occurs 1 in every 110 births in the United
States. While various whole heart and great vessel segmentation frame-
works have been developed in the literature, they are ineffective when
applied to medical images in CHD, which have significant variations in
heart structure and great vessel connections. To address the challenge,
we leverage the power of deep learning in processing regular structures
and that of graph algorithms in dealing with large variations, and pro-
pose a framework that combines both for whole heart and great vessel
segmentation in CHD. Particularly, we first use deep learning to seg-
ment the four chambers and myocardium followed by blood pool, where
variations are usually small. We then extract the connection information
and apply graph matching to determine the categories of all the vessels.
Experimental results using 68 3D CT images covering 14 types of CHD
show that our method can increase Dice score by 12% on average com-
pared with the state-of-the-art whole heart and great vessel segmentation
method in normal anatomy. Our dataset is released to the public.

Keywords: Congenital heart disease · Segmentation · Deep neural
networks · Graph matching

1 Introduction

Congenital heart disease (CHD) is the most common cause of infant death due to
birth defects [3]. It usually comes with significant variations in heart structures
and great vessel connections, which renders general whole heart and great vessel
segmentation methods [9,11] in normal anatomy ineffective. Most existing seg-
mentation methods dedicated to CHD target blood pool and myocardium only
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Fig. 1. Examples of large structure variations in CHD. In normal heart anatomy (a),
PA is connected to RV. However, in pulmonary atresia (b), PA is rather small and
connected to descending Ao. In common arterial trunk (c), Ao is connected to both
RV and LV, and PA is connected to Ao.

[13,16]. Recently, semi-automated segmentation in CHD has also been explored
[8], which requires users to locate an initial seed. However, fully automated seg-
mentation of whole heart and great vessel segmentation in CHD still remains a
missing piece in the literature.

Inspired by the success of graph matching in a number of applications with
large variations [4], in this paper we propose to combine deep learning [6,7,12,
14,15] and graph matching for fully automated whole heart and great vessel
segmentation in CHD. Particularly, we leverage deep learning to segment the
four chambers and myocardium followed by blood pool, where variations are
usually small and accuracy can be high. We then extract the vessel connection
information and apply graph matching to determine the categories of all the
vessels. Compared with the state-of-the-art method for whole heart and great
vessel segmentation in normal anatomy, our method can achieve 12% higher Dice
score. Our dataset including 68 3D CT images with 14 types of CHD is available
at [1].

2 Background

Within normal heart anatomy as shown in Fig. 1(a), there are usually seven
substructures: left ventricle (LV), right ventricle (RV), left atrium (LA), right
atrium (RA), myocardium (Myo), faorta (Ao) and pulmonary artery (PA). Note
that the area including RA, LA, LV, RV, PA, and Ao is defined as blood pool.
However, CHD usually suffers from significant variations in heart structure and
great vessel connections. Six common types of CHD [3] include: atrial septal
defect (ASD), atrio-ventricular septal defect (AVSD), patent ductus arteriosus
(PDA), pulmonary stenosis (PS), ventricular septal defect (VSD), co-arctation
(CA). Figure 1(b) and (c) shows two less common types with larger variations,
where we can notice that PA is connected to Ao rather than RV. As existing
methods perform pixel-wise classification based on the surrounding pixels in the
receptive field, the disappeared main trunk of PA renders them ineffective.
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Table 1. The types of CHD in our dataset and the associated number of images. Note
that some images may correspond to more than one type of CHD.

Common CHD Less common CHD Normal

ASD AVSD VSD PDA CA PS ToF TGA PAS AD CAT AAA SV PuA

17 4 26 7 4 4 7 4 3 20 4 8 2 7 2

(a) Normal heart anatomy (b) Pulmonary atresia (PuA) (c) Common arterial trunk (CAT)
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Fig. 2. Pulmonary atresia and common arterial trunk examples in our dataset, with
large variations from normal heart anatomy.

3 Dataset

Our dataset consists of 68 3D CT images captured by a Simens biograph 64
machine. The ages of the associated patients range from 1 month to 21 years, with
majority between 1 month and 2 years. The size of the images is 512× 512×(130
− 340), and the typical voxel size is 0.25× 0.25× 0.5 mm3. The dataset covers
14 types of CHD, which include the six common types discussed in Sect. 2 plus
eight less common ones (Tetrology of Fallot (ToF), transposition of great arteries
(TGA), pulmonary artery sling (PAS), anomalous drainage (AD), common arte-
rial trunk (CAT), aortic arch anomalies (AAA), single ventricle (SV), pulmonary
atresia (PuA)). The number of images associated with each is summarized in
Table 1. All labeling were performed by experienced radiologists, and the time
for labeling each image is 1–1.5 h. The labels include seven substructures: LV,
RV, LA, RA, Myo, Ao and PA. For easy processing, venae cavae (VC) and pul-
monary vein (PV) are also labeled as part of RA and LA respectively, as they are
connected and their boundaries are relatively hard to define. Anomalous vessels
are also labeled as one of the above seven substructures based on their connec-
tions. Figure 2 shows 3D views of some examples in our dataset with significant
structure variations.

4 Method

Overview: The overall framework is shown in Fig. 3. Region of interest (RoI)
cropping extracts the area that includes the heart and its surrounding vessels.
We resize the input image to a low resolution of 64× 64× 64, and then adopt
the same segmentation-based extraction as [9] to get the RoI. Chambers and
myocardium segmentation resizes the extracted RoI to 64× 64× 64 which
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Fig. 3. Overview of the proposed framework combining deep learning and graph match-
ing for whole heart and great vessel segmentation in CHD.
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Fig. 4. Illustration of chambers and myocardium refinement. (a) is obtained from blood
pool segmentation (high resolution). (b) is from chambers and myocardium segmen-
tation (low resolution). (c) is the remaining blood pool by subtracting chambers (b)
from blood pool (a). It is added to the surrounding chambers to refine the boundaries
(d). (e) and (f) are the ground truth and CT image, respectively.

is fed to a 3D U-net for segmentation. Blood pool segmentation is con-
ducted on each 2D slice of the input using a 2D U-net [10] with an input size of
512× 512. Note that in order to detect the blood pool boundary for easy graph
extraction in graph matching later, we add another class blood pool bound-
ary in the segmentation. Chambers and myocardium refinement refines
the boundaries of chambers and myocardium based on the outputs of chambers
and myocardium segmentation and blood pool segmentation. Graph match-
ing identifies Ao, PA and anomalous vessels using the outputs of blood pool
segmentation and chambers and myocardium segmentation. More details about
chambers and myocardium refinement and graph matching are discussed as fol-
lows.

Chambers and Myocardium Refinement: To avoid excessive memory con-
sumption and over-fitting [9], the input of 3D U-net is usually limited to low reso-
lution or small size, and accordingly the chambers and myocardium segmentation
results may lose boundary information. This is critical for CHD where significant
variations exist. To address this issue, we refine the boundary of chambers and
myocardium by reusing the blood pool segmentation results, which is in high
resolution. Specifically, we remove the portion of blood pool that corresponds to
the chambers from the results of blood pool segmentation, and the remaining
blood pool is added to its surrounding chambers to refine the boundaries. With
the refined boundary of chambers, the boundary of myocardium is also refined as
the chambers and the myocardium share a large portion of boundaries as shown
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Fig. 5. Illustration of great vessel segmentation with graph matching. With smoothing,
the skeleton of great vessels can be easily extracted, and then its corresponding graph
is obtained for graph matching based classification of Ao, PA and anomalous vessels.

in Fig. 1. An illustration of the refinement process is shown in Fig. 4. Comparing
(b) with (e), we can notice that part of the boundary information is lost, and
the boundary is indeed refined after the process as shown in (d).

Graph Matching: Great vessels can be obtained by removing the chambers
areas from the blood pool, which need to be segmented to identify Ao, PA as well
as anomalous vessels. This is where significant variations can occur in CHD. To
address this issue, we adopt a surface thinning algorithm [5] to obtain skeletons
of blood vessels for graph matching, and the workflow is shown in Fig. 5. A
graph library is built to represent all the possible connections of great vessels
and anomalous vessels. We then extract the graphs corresponding to Ao, PA, and
anomalous vessels or their mixtures. Note that these extracted graphs should be
disconnected from each other to match with the ones in the library. However,
due to inaccurate blood pool segmentation or small anomalous connections, the
graphs are often fused together, making the matching difficult. To tackle this
issue, we apply multiple smoothing in various scales to extract several candidate
graphs. Then we match these graphs with the ones in the library to identify
the most similar pairs. With graph matching, the categories of the extracted
graphs as well as the categories of the corresponding vessels in these graphs can
be determined (based on the labeled graphs in the library). The vessels that are
left out in the smoothing process are finally classified by a simple region growing
technique [2].

5 Experiments

Experiment Setup: All the experiments run on a Nvidia GTX 1080Ti GPU
with 11 GB memory. We implement our 3D U-net using Pytorch based on [9].
For 2D U-net, most configurations remain the same with those of the 3D U-net
except that 2D U-net adopts 5 levels and the number of filters in the initial level
is 16. Both Dice loss and cross entropy loss are used, and the training epochs are
6 and 480 for 2D U-net and 3D U-net, respectively. Data augmentation is also
adopted with the same configuration as in [9] for 3D U-net. Data normalization
is the same as [9]. The learning rate is 0.0002 for the first 50% epochs, and
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Table 2. Mean and standard deviation of Dice score of the state-of-the-art method
Seg-CNN [9] and our method (in %) for seven substructures of whole heart and great
vessel segmentation.

Method LV RV LA RA Myo Ao PA Average

Seg-CNN [9] 67.3 65.0 70.2 76.0 71.5 63.0 52.3 66.5

std ±13.9 ±12.0 ±7.8 ±7.5 ±8.3 ±13.3 ±12.3 ±10.7

Our method 82.4 77.6 78.6 82.7 77.3 82.2 67.1 78.3

std ±10.5 ±14.3 ±7.4 ±7.5 ±8.3 ±8.1 ±19.8 ±10.8

(a) Ground truth with CAT (b) Our method with CAT (c) Seg-CNN with CAT
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Fig. 6. Visualized comparison between the state-of-the-art method Seg-CNN [9] and
our method. The differences from the ground truth are highlighted by the red circles.
(Color figure online)

Table 3. Mean and standard deviation of Dice score of the state-of-the-art method
Seg-CNN [9] and our method (in %) in mild and severe CHDs.

Method Mild CHD (VSD, ASD, AVSD, PDA) Severe CHD (others)

Seg-CNN [9] 70.3± 8.3 62.7± 14.4

Our method 82.6± 6.2 74.1± 14.5

then 0.00002 afterward. We adopt Seg-CNN [9] that achieves the state-of-the-
art performance in whole heart and great vessel segmentation within normal
anatomy for comparison. The configuration is the same as that in [9].

For both methods, four-fold cross validation is performed (17 images for test-
ing and 51 images for training). The split of our dataset considers the structures
of CHD so that any structure in the testing dataset also has a similar presence
in the training dataset, though they may be not of the same type of CHD. The
Dice score is used for segmentation evaluation.

Results and Analysis: The comparison with Seg-CNN [9] is shown in Table 2.
Our method can get 5.8%–19.2% higher mean Dice score across the seven sub-
structures (12% higher on average). The highest improvement is achieved in Ao,
which is due to its simple graph connection with successful graph matching.
The least improvement is obtained in myocardium, which is due to the fact that
myocardium is not well considered in the high-resolution blood pool segmen-
tation. Visualization of CAT segmentation using our method and Seg-CNN is
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(e) Ground truth of (d)(d) PuA with Dice: 50.5%
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Fig. 7. Visualization of our segmentation results with (a) best, (b)(c) median, and (d)
worst Dice scores among all the test images. The ground truth of (d) is shown in (e).
Red circles indicate the segmentation error. (Color figure online)

shown in Fig. 6. Our method can clearly segment Ao and PA with some slight
mis-segmentation between PA and LA. However, Seg-CNN segments the main
part of Ao as PA, which is due to the fact that pixel-level segmentation by U-net
is only based on the surrounding pixels, and the connection information is not
well exploited.

The segmentation performance of our method and Seg-CNN [9] in different
scenarios (mild and severe CHDs) [3] is shown in Table 3. Both methods achieve
higher mean Dice with lower standard deviations in mild CHD than in severe
CHD, as severe CHD has more complicated structure variations. Compared with
Seg-CNN, our method can achieve about 12% higher mean Dice score on both
mild and severe CHDs on average. Our method also achieves a 1.9% reduction
on standard deviation of Dice score in mild CHD compared with Seg-CNN [9].

Finally, visualizations of segmentation results from our method with best,
median and worst Dice score among all the test images are shown in Fig. 7.
The segmentation result in Fig. 7(a) achieves the best accuracy, and most of
the structures are segmented correctly, with some error in the tiny connections
between RA and Ao as indicated by the red circle. The segmentation results in
Fig. 7(b) and (c) have some more serious mis-segmentation: the one in Fig. 7(b)
has an anomalous vein from RA which is segmented as part of Ao due to the
boundary extraction error in blood pool segmentation, and the one in Fig. 7(c)
suffers from the boundary extraction error between LA and PA. This type of
error also leads to the result with the worst Dice score as shown in Fig. 7(d),
with corresponding ground truth provided in (e). In the ground truth, a thick
anomalous vein from RA crosses Ao, and PA has no trunk vessels and is of a
very small volume. Compared with the ground truth, the thick anomalous vein
from RA is mis-classified as PA, and the majority of PA is mis-classified as LA.
In the future work, we will try to solve this problem to correctly extract all the
critical boundaries.
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6 Conclusion

In this paper we proposed a whole heart and great vessel segmentation framework
for CT images in CHD. We first used deep learning to segment the four chambers
and myocardium followed by blood pool, where variations are usually small.
We then extracted the connection information and apply graph matching to
determine the categories of all the vessels. We collected a CHD dataset in CT
with 68 3D images, and the ground truth has seven categories: LV, RV, LA, RA,
myocardium, Ao and PA. Totally 14 types of CHD are included in this dataset
which is made publicly available. Compared with the state-of-the-art method for
whole heart and great vessel segmentation in normal anatomy, our method can
achieve 12% improvement in Dice score on average.
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