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Abstract. Congenital heart disease (CHD) is the most common type
of birth defects, which occurs 1 in every 110 births in the United States.
CHD usually comes with severe variations in heart structure and great
artery connections that can be classified into many types. Thus highly
specialized domain knowledge and time-consuming human process is
needed to analyze the associated medical images. On the other hand,
due to the complexity of CHD and the lack of dataset, little has been
explored on the automatic diagnosis (classification) of CHDs. In this pa-
per, we present ImageCHD, the first medical image dataset for CHD
classification. ImageCHD contains 110 3D Computed Tomography (CT)
images covering most types of CHD, which is of decent size compared
with existing medical imaging datasets. Classification of CHDs requires
the identification of large structural changes without any local tissue
changes, with limited data. It is an example of a larger class of problems
that are quite difficult for current machine-learning based vision methods
to solve. To demonstrate this, we further present a baseline framework
for automatic classification of CHD, based on a state-of-the-art CHD seg-
mentation method. Experimental results show that the baseline frame-
work can only achieve a classification accuracy of 82.0% under selective
prediction scheme with 88.4% coverage, leaving big room for further im-
provement. We hope that ImageCHD can stimulate further research and
lead to innovative and generic solutions that would have an impact in
multiple domains. Our dataset is released to the public [1].

Keywords: Dataset · Congenital Heart Disease · Automatic Diagnosis
· Computed Tomography.

1 Introduction

Congenital heart disease (CHD) is the problem with the heart structure that is
present at birth, which is the most common type of birth defects [3]. In recent
years, noninvasive imaging techniques such as computed tomography (CT) have
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prevailed in comprehensive diagnosis, intervention decision-making, and regu-
lar follow-up for CHD. However, analysis (e.g., segmentation or classification)
of these medical images are usually performed manually by experienced cardio-
vascular radiologists, which is time-consuming and requires highly specialized
domain knowledge.
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Fig. 1. Examples of large heart structure and great artery connection variations in
CHD (LV-left ventricle, RV-right ventricle, LA-left atrium, RA-right atrium, Myo-
myocardium, AO-aorta and PA-pulmonary artery). Best viewed in color.

On the other hand, automatic segmentation and classification of medical
images in CHD is rather challenging. Patients with CHD typically suffer from
severe variation in heart structures and connections between different parts of
the anatomy. Two examples are shown in Fig. 1: the disappearance of the main
trunk of pulmonary artery (PA) in (b)(c) introduces much difficulty in the cor-
rect segmentation of PA and AO. In addition, CHD does not necessarily cause
local tissue changes, as in lesions. As such, hearts with CHD have similar local
statistics as normal hearts but with global structural changes. Automatic algo-
rithms to detect the disorders need to be able to capture such changes, which
require excellent usage of the contextual information. CHD classification is fur-
ther complicated by the fact that a patient’s CT image may exhibit more than
one type of CHD, and the number of types is more than 20 [3].

Various works exist in segmentation and classification of heart with normal
anatomy, e.g., [13, 8, 17, 9, 25, 4, 20, 23, 6, 24, 22, 5, ?], most of which are based on
deep neural networks (DNNs) [15, ?]. Recently, researchers started to explore
heart segmentation in CHD. The works [21, 14, 19, 18, 7] adopt DNNs for blood
pool and myocardium segmentation only. The only automatic whole heart and
great artery segmentation method in CHD [16] in the literature uses a deep
learning and shape similarity analysis based method. A 3D CT dataset for CHD
segmentation is also released there. In addition to segmentation, there are also
some works about classification of adult heart diseases [2] but not CHD. The
automatic classification of CHD still remains a missing piece in the literature
due to the complexity of CHD and the lack of dataset.

In this paper, we present ImageCHD, the first medical image dataset for CHD
classification. ImageCHD contains 110 3D Computed Tomography (CT) images
which covers 16 types of CHD. CT images are labelled by a team of four expe-
rienced cardiovascular radiologists with 7-substructure segmentation and CHD
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type classification. The dataset is of decent size compared with other medical
imaging datasets [21][17]. We also present a baseline method for automatic CHD
classification based on the state-of-the-art CHD segmentation framework [16],
which is the first automatic CHD classification method in the literature. Results
show that the baseline framework can achieve a classification accuracy of 82.0%
under selective prediction scheme with 88.4% coverage, and there is still big
room for further improvement.
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Fig. 2. Examples of CT images in the ImageCHD dataset with its types of CHD.

2 The ImageCHD Dataset

The ImageCHD dataset consists of 3D CT images captured by a Siemens bio-
graph 64 machine from 110 patients, with age between 1 month and 40 years
(mostly between 1 month and 2 years). The size of the images is 512×512×(129−357),
and the typical voxel size is 0.25×0.25×0.5mm3. The dataset covers 16 types
of CHD, which include eight common types (atrial septal defect (ASD), atrio-
ventricular septal defect (AVSD), patent ductus arteriosus (PDA), pulmonary
atresia (PuA), ventricular septal defect (VSD), co-arctation (CA), tetrology of
fallot (TOF), and transposition of great arteries (TGA)) plus eight less com-
mon ones (pulmonary artery sling (PAS), double outlet right ventricle (DORV),
common arterial trunk (CAT), double aortic arch (DAA), anomalous pulmonary
venous drainage (APVC), aortic arch hypoplasia (AAH), interrupted aortic arch
(IAA), double superior vena cava (DSVC)). The number of images associated
with each is summarized in Table 1. Several examples of images in the dataset
are shown in Figure 2. Due to the structure complexities, the labeling including
segmentation and classification is performed by a team of four cardiovascular
radiologists who have extensive experience with CHD. The segmentation label
of each image is fulfilled by only one radiologist, and its diagnosis is performed
by four. The time to label each image is around 1-1.5 hours on average. The
segmentation include seven substructures: LV, RV, LA, RA, Myo, AO and PA.
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Table 1. The types of CHD in the ImageCHD dataset (containing 110 3D CT images)
and the associated number of images. Note that some images may correspond to more
than one type of CHD.

Common CHD

ASD AVSD VSD TOF PDA TGA CA PuA
26 18 44 12 14 7 6 16

Less Common CHD Normal

PAS DORV CAT DAA APVC AAH IAA DSVC
3 8 4 5 6 3 3 8 6

3 The Baseline Method
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Fig. 3. Overview of the baseline method for CHD classification.

Overview: Due to the lack of baseline method for CHD classification, along
with the dataset we establish one as shown in Fig. 3, which modifies and extends
the whole heart and great artery segmentation method in CHD [16]. It includes
two subtasks: segmentation based connection analysis and similarity based shape
analysis. Accordingly, the parts and connections most critical to the classification
are extracted.
Segmentation based connection analysis: Segmentation is performed with
multiple U-Nets [11]. There are two steps in segmentation: blood pool segmenta-
tion, and chambers and initial parts of great arteries segmentation. The former
is fulfilled by a high-resolution (input size 512 × 512 ) 2D U-net, while the lat-
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ter is performed with a 3D low-resolution (input size 64 × 64 × 64 ) 3D U-net.
A Region of Interest (RoI) cropping is also included with a 3D U-net before
the 3D segmentation. With the segmentation results, connection analysis can
be processed, which mainly extracts the connection features between great ar-
teries (AO and PA) and LV/RV, and between LV/LA and RV/RA. With the
segmentation results, two connection analyses between chambers, AO and PA
are then performed by the connection analysis module. The first one analyzes
the connections between LV/RV and great arteries. We remove high resolution
boundary from low resolution substructures as shown in Fig. 4(a)-(c). Compared
with the ground truth in Fig. 4(d), Fig. 4(c) shows that the two initial parts are
correctly separated (but not in (b) where they will be treated as connected).
The second one has a similar process as the first one.

Similarity based shape analysis: The flow of this subtask is shown in Fig.
5. With the segmentation results, vessel extraction removes the blood pool cor-
responding to chambers, and vessel refinement removes any remaining small is-
lands in the image, and smooths it with erosion. Then, the skeleton of the vessels
are extracted, sampled, normalized, and fed to the shape similarity calculation
module to obtain its similarity with all the templates in a pre-defined library.
Similarity module is performed using earth mover’s distance (EMD) which is a
widely used similarity metric for distributions [12]. Two factors need to be mod-
eled: the weight of each bin in the distribution, and the distance between bins.
We model each sampled point in the sampled skeleton as a bin, the Euclidean
distance between the points as the distance between bins, and the volume of
blood pool around the sampled point as the weight of its corresponding bin.
Particularly, the weight is defined as r3 where r is the radius of the inscribed
sphere in the blood pool centered at the sampled point. The template library is
manually created in advance and contains six categories of templates correspond-
ing to five types of CHDs and the normal anatomy as shown in Fig. 5, covering
all the possible shapes of great arteries in our dataset. Each category contains
multiple templates. Finally, the shape analysis module takes the skeleton and its
similarities to obtain two kinds of features. The type of the template with the
highest similarity is extracted as the first kind. The second kind includes two
skeleton features: whether a circle exists in the skeleton, and how the r of the
sample points varies. These two features are desired because if there is a circle
in the skeleton, the test image is with high possibility to be classified as DAA; If
a sampled point with a small r is connected to two sampled points with a much
larger r, narrow vessel happens, which is a possible indication of CA and PuA.

Final determination: With the extracted connection and shape features, the
classification can be finally determined using a rule-based automatic approach.
Specifically, ASD and VSD have unexpected connection between LA and RA,
and LV and RV, respectively. AVSD is a combination of ASD and VSD, and
the three can be classified according to the connection features between LA/LV
and RA/RV. DORV has two initial parts of great arteries, both of which are
connected to RV. TOF has connected LV and RV, as well as connected LV,
RV and the initial part of AO. CHD with specific shapes including CAT, DAA,
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Fig. 5. Similarity based shape analysis of great arteries. Best viewed in color.

PuA, PAS and IAA as shown in Fig. 5 can be classified by their shape features.
PDA and CA are determined by analyzing the shapes and skeletons such as the
variety of r along the skeleton. DSVC can be easily classified by analyzing the
skeleton of RV, and APVC is determined by the number of islands that the LA
has. Note that if the connection and shape features do not fit any of the above
rules, the classifier outputs uncertain indicating that the test image cannot be
handled and manual classification is needed.

4 Experiment

Experiment setup: All the experiments run on a Nvidia GTX 1080Ti GPU
with 11 GB memory. We implement the 3D U-net using PyTorch based on [8]. For
2D U-net, most configurations remain the same with those of the 3D U-net except
that it adopts 5 levels and the number of filters in the initial level is 16. Both
Dice loss and cross entropy loss are used, and the training epochs are 2 and 480
for 2D U-net and 3D U-net, respectively. Data augmentation and normalization
are also adopted with the same configuration as in [8] for 3D U-net. For both
networks and all the analyses, three-fold cross validation is performed (about 37
images for testing, and 73 images for training). We split the dataset such that all
types of CHD are present in each subset. The classification considers a total of
17 classes, including 16 types of CHD and the normal anatomy. The templates
in the template library are randomly selected from the annotated training set.

In the evaluation, we use selective prediction scheme [10] and report a case as
uncertain if at least one chamber is missing (which does not correspond to any



Title Suppressed Due to Excessive Length 7

type in our dataset) in the segmentation results, or in the similarity calculation
the minimum EMD is larger than 0.01. For these cases, manual classification by
radiologists is needed. To further evaluate how the baseline method performs
against human experts, we also extract manual CT classification from the elec-
tronic health records (the manual results can still be wrong).

Results and analysis: The CHD classification result is shown in Table 2. Each
entry (X, Y) in the table corresponds to the number of cases with ground truth
class suggested by its row header and predicted class by its column header, where
X, and Y are the results from the baseline, and those from radiologists respec-
tively. Again, an image can contribute to multiple cases if it contains more than
one types of CHD. From the table we can see that for the baseline method,
due to segmentation error or feature extraction failure, 22 cases are classified as
uncertain, yielding a 88.4% coverage; Out of the remaining 167 cases, 137 are
correct. Thus, for the baseline the overall classification accuracy is 72.5% for
full prediction, and 82.0% for selective prediction. For the modified baseline, the
overall classification accuracy is 39.2% for full prediction and 50.3% for selective
prediction. On the other hand, the manual classification from experienced radi-
ologist can achieve an overall accuracy of 90.5%. It is interesting to note that
out of the 17 classes, the baseline method achieves higher accuracy in one (PuA)
and breaks even in four (VSD, CAT, DAA, and AAH) compared with manual
classification. In addition, Out of the 110 cases, the five radiologists only unan-
imously agreed on 78 cases, which further reflects the difficulty of the problem
and the value of an automated tool.

The mean and standard deviation of Dice score of our baseline method for
six substructures of chambers and initial parts of great vessels segmentation,
and blood pool segmentation are shown in Fig. 3. We can notice that blood
pool has the highest score, and initial parts of great vessels has the lowest, and
the overall segmentation performance is moderate. Though the segmentation
performance of initial parts is low, its related types of CHDs (e.g., ToF, TGA)
still achieve high classification accuracy which is due to the fact that only the
critical segmentation determines the types of CHDs. Comparing the performance
of segmentation and classification, we can also notice that accurate segmentation
usually helps classification, but not necessarily.

Classification success: Six types of CHD including TGA, CAT, DAA, AAH,
PAS and PuA achieve relatively high accuracy, which is due to their clear and
stable features that distinguish them from normal anatomy. Such features can be
easily captured by either connection or shape features extracted by the baseline
method. For example, CAT has a main trunk that AO and PA are both connected
to; DAA has a circular vessel which is composed of two aortic arches; PAS has
a PA with very different shape; PuA has a very thin PA without main trunk;
AAH has a long period of narrow vessels in the arch; and TGA has a reversed
connection to LV and RV.

Classification failure: Test images are classified as uncertain due to segmenta-
tion error. Fig. 6 shows some examples of such error. The test image in Fig. 6(a)
has very low contrast, and its blood pool and boundary are not clear compared
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Table 2. Number of cases (X, Y) with ground truth class and predicted class suggested
by the row and column headers respectively, where X, and Y correspond to automatic
classification by the baseline, and manual classification, respectively. Green numbers
along the diagonal suggest correct cases. (U-Uncertain, 1-ASD, 2-AVSD, 3-VSD, 4-
TOF, 5-PDA, 6-TGA, 7-CA, 8-IAA, 9-PAS, 10-DORV, 11-CAT, 12-DAA, 13-APVC,
14-AAH, 15-PuA, 16-DSVC, N-Normal)

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 N

1 6,0 18,24 2,2
2 3,0 1,3 9,14 5,1
3 1,0 1,2 42,42
4 1,0 4,2 7,10
5 7,14 7,0
6 1,0 6,7
7 1,0 4,6 1,0
8 2,3 1,0
9 1,0 2,3
10 1,0 3,1 1,1 3,6
11 4,4
12 5,5
13 1,0 3,6 2,0
14 1,0 2,2 0,1
15 2,0 0,2 0,1 0,1 14,10
16 1,0 5,7 2,1
N 2,0 4,6
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Segmentation
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(d)	Ground	
truth	of	(c)

LA

LV

RARV

Initial	
part

(a) Poor	3D	segmentation	
due	to	low	data	quality (b)	Ground	truth	of	(a)	

LAAO

RARV

PA

(e)	Error:	
TOF->	Normal

Narrow->	
Not	narrow

Fig. 6. Examples of classification failure: uncertain classification in (a-b), and wrong
classification of TOF in (c) and (e). Best viewed in color.

with other areas, resulting in segmentation error: compared with the ground
truth in Fig. 6(b), only RA and part of the initial parts of great arteries are
segmented. As for the cases where a CHD type is predicted but wrong, we will
use TOF as examples, and leave the comprehensive discussion for all classes in
the supplementary material. Segmentation error around the initial parts of great
arteries is the main reason of the classification failure of TOF as shown in Fig. 6.
Compared with the ground truth in Fig. 6(d), the 3D segmentation in Fig. 6(c)
labels part of LV as RV, resulting in the initial part only connected to RV rather
than RV and LV. As one of the main features of TOF is that one initial part is
connected to both RV and LV, missing such feature leads to misclassification of
TOF as VSD. Another main feature of TOF is the narrow vessels in the initial
part and its connected RV part, which can also lead to wrong classification if not
detected correctly as shown in Fig. 6(e). A precise threshold to decide whether
the vessels are narrow or not is still missing even in clinical studies.
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Table 3. Mean and standard deviation of Dice score of our baseline method (in %)
for six substructures of chambers and initial parts of great vessels segmentation, and
blood pool segmentation.

LV RV LA RA Initial parts of great vessels Blood pool Average

77.7 74.6 77.9 81.5 66.5 86.5 75.6
±16.2 ±13.8 ±11.2 ±11.5 ±15.1 ±10.5 ±10.2

Discussion: We can notice that segmentation accuracy is important for suc-
cessful classification of CHD. Higher segmentation accuracy can lead to better
connection and shape feature extraction. In addition, so far we have only con-
sidered the connection features in the blood pool and the shapes of the vessels.
More structural features associated with classification should be considered to
improve the performance, which due to the lack of local tissue changes, need in-
novations from the deep learning community and deeper collaboration between
computer scientists and radiologists.

5 Conclusion

We introduce to the community the ImageCHD dataset [1] in hopes of encourag-
ing new research into unique, difficult and meaningful datasets. We also present a
baseline method for comparison on this new dataset, based on a state-of-the-art
whole-heart and great artery segmentation method for CHD images. Experimen-
tal results show that under selective prediction scheme the baseline method can
achieve a classification accuracy of 82.0%, leaving big room for improvement. We
hope that the dataset and the baseline method can encourage new research that
be used to better address not only the CHD classification but also a wider class of
problems that have large global structural change but little local texture/feature
change.
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