
Efficient Hardware Implementation of Cellular Neural Networks
with Powers-of-Two Based Incremental Quantization

Xiaowei Xu1,2, Qing Lu1, Tianchen Wang1, Jinglan Liu1, Yu Hu2 and Yiyu Shi1

1 University of Notre Dame, South Bend, IN, USA
2 Huazhong University of Science and Technology, Wuhan, China

yshi4@nd.edu

ABSTRACT

Cellular neural networks (CeNNs) have been widely adopt-
ed in image processing tasks. Recently, various hardware
implementations of CeNNs have emerged in the literature,
with Field Programmable Gate Array (FPGA) being one of
the most popular choices due to its high flexibility and low
time-to-market. However, existing FPGA implementations
of CeNNs are typically bounded by the limited number of
embedded multipliers available therein, while the vast num-
ber of Logic Elements (LEs) and registers are never utilized.
Apparently, such unbalanced resource utilization leads to
sub-optimal CeNN performance and speed. To address this
issue, in this paper we propose an incremental quantization
based approach for the FPGA implementation of CeNNs.
It quantizes the numbers in CeNN templates to powers of
two, so that complex and expensive multiplications can be
converted to simple and cheap shift operations, which only
require a minimum number of registers and LEs. While simi-
lar concept has been explored in hardware implementations
of Convolutional Neural Networks (CNNs), CeNNs have com-
pletely different computation patterns which require different
quantization and implementation strategies. Experimental
results on FPGAs show that our approach can significantly
improve the resource utilization, and as a direct consequence
a speedup up to 7.8x can be achieved with no performance
loss compared with the state-of-the-art implementations. We
also discover that different from CNNs, the optimal quantiza-
tion strategies of CeNNs depend heavily on the applications.
We hope that our work can serve as a pioneer in the hardware
optimization of CeNNs.

CCS CONCEPTS

• Hardware → Hardware accelerators;Hardware-software
codesign; Cellular neural networks;

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

NCS ’17, July 17–19, 2017, Knoxville, TN, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-6442-3/17/07. . . $15.00
https://doi.org/10.1145/3183584.3183611

KEYWORDS

Cellular neural networks, Quantization, FPGA

ACM Reference Format:

Xiaowei Xu1,2, Qing Lu1, Tianchen Wang1, Jinglan Liu1, Yu Hu2

and Yiyu Shi1. 2017. Efficient Hardware Implementation of Cellular

Neural Networks with Powers-of-Two Based Incremental Quantiza-
tion. In NCS ’17: Neuromorphic Computing Symposium, July 17–

19, 2017, Knoxville, TN, USA, Jennifer B. Sartor, Theo D’Hondt,
and Wolfgang De Meuter (Eds.). ACM, New York, NY, USA,
Article 4, 10 pages. https://doi.org/10.1145/3183584.3183611

1 INTRODUCTION

Cellular Neural Networks (CeNNs) can model the working
principles of many sensory parts of human brains. Different
from Convolutional Neural Networks (CNNs) which are most
powerful in classification related tasks, CeNNs are gener-
ally good at various image processing areas such as noise
cancellation [14], edge detection [6], path planning [9] and
segmentation [5]. Due to the complex nature of these tasks
and the associated real-time requirements in many applica-
tions, hardware implementations of CeNNs have remained
an active research topic in the literature.

The structure of CeNNs makes them a natural fit for ana-
log implementations. Many studies exist along this direction
[8][22][16][1]. The advantages of analog implementations in-
clude high performance with an extremely fast convergence
rate and the convenience of integrating them into image sen-
sors for direct processing of captured data. However, these
analog implementations suffer from Input/output (I/O) and
data precision problems. First, they require that each input
corresponds to a unique neuron cell, resulting in too many
I/O ports. For example, recent implementation [1] can only
support 256×256 pixels at its most, which is far from the pro-
cessing requirement of mainstream images, e,g., 1920×1080
pixels. Second, analog circuits are prone to noise, which limit
the output data precision to 7 bits or below [27]. As a result,
analog implementation cannot even process regular 8-bit gray
images.

In view of the above issues, digital implementations of
CeNNs have been proposed, where data is quantized with
approximation. Tens to hundreds of iterations are needed in
the discretized process and as a result, the computational
complexity of digital CeNNs is very high. For example, to
process an image of 1920x1080 pixels requires 4-8 Giga opera-
tions (for 3×3 templates and 50-100 iterations), which needs
to be done in 40 ms or below for real-time video streaming.

https://doi.org/10.1145/3183584.3183611
https://doi.org/10.1145/3183584.3183611

NCS ’17, July 17–19, 2017, Knoxville, TN, USA B. Trovato et al.

To tackle the computation challenge, CeNN accelerations
on digital platforms such as ASICs [13][15], GPUs [20] and F-
PGAs [2][19] [17][27][28] [18] have been explored, with FPGA
among the most popular choices due to its high flexibility and
low time-to-market. The work [2] presented a baseline design
with several applications, while the study [19] took advantage
of reconfigurable computing for CeNNs. Recently, the CeNN
implementation for binary images was demonstrated [18].
Expandable and pipelined implementations were achieved
on multiple FPGAs [17]. Taking advantage of the structure
in [17], the work [27] implemented a high throughput real-
time video streams system, which is further improved to be
a complete system for video processing [28]. All the three
works share the same architecture for CeNN computation.
Due to the large number of multiplications needed in CeNNs,
the limited quantity of embedded multipliers in an FPGA
become the bottleneck for further improvement. For exam-
ple, in work [17] 95%-100% of the embedded multipliers are
used. On the other hand, it is interesting to note that the
utilization rates of LEs and registers are only 5% and 2%,
respectively, which is natural to expect as not many logic
operations are needed. However, in a mainstream FPGA,
LEs and registers count for significantly larger portion of
the total programmable resources than embedded multipliers.
For example, LEs and registers occupy 95.4% of the core area
while embedded multipliers only 4.6% for a EP3LS340 FP-
GA [25]. Such an unbalanced resource utilization apparently
cannot attain the best possible speed of the CeNN being
implemented, and an improved strategy is strongly desired.

A naive approach for potential improvement is to use
LEs and registers to implement additional multipliers. This
technique, although straightforward, is very inefficient due
to the high cost associated. For example, it takes 676 LEs
and 486 shift registers to implement an 18-bit multiplier.
For an XC4LX25 FPGA, all the LEs and registers can only
contribute 42% additional multipliers. Apparently, such an
approach will not lead to significant improvement and we
try to address the problem through an alternative approach,
i.e., by completely eliminating the need of multipliers. From
basic boolean algebra, we know that the multiplication of
any number with powers of two can simply be done with
logic shift, which only requires a small number of LEs and
registers to achieve. Inspired by this, we can quantize the
numbers in CeNN templates to powers of two, so that we
can make full use of the abundant LEs and registers in
FPGAs. An extra benefit from this approach is that LEs and
registers are much more flexible for placement and routing,
leading to higher clock frequencies. While this can lead to
significantly higher resource utilization rate and reduced
computational complexity, many interesting questions still
remain. For example, how would such quantizations affect
the final CeNN accuracy? What is the impact of different
quantization strategies? Note that quantization to powers
of two has been explored in the context of CNNs [29], but
as detailed in Section 2.3, the difference in computation
structures between CeNNs and CNNs warrants a separate

investigation for CeNNs. And indeed, we figure out that the
answers to these questions are different for the two.

In this paper we systematically put forward the framework
of powers-of-two based incremental quantization of CeNNs for
efficient hardware implementation. The framework contains
iterative procedures including parameter partition, parame-
ter quantization, and re-training. We propose five different
strategies including random strategy, pruning inspired strat-
egy, weighted pruning inspired strategy, nearest neighbor
strategy, and weighted nearest neighbor strategy. Out of
the five only pruning-inspired strategy and random strate-
gy have been adopted in incremental quantization of CNNs
[29] due to the differences in their computation patterns.
We have conducted extensive experiments with three widely
used applications to evaluate the performance of incremental
quantization. We then implement these quantized CeNNs
on FPGAs with multiplications realized by shift operations.
Based on CeNN template structures, sparsity-induced and
repetition-induced optimizations for quantized templates are
also exploited for situations where resources are extremely
limited. Experimental results show that our approach can
achieve a speedup up to 7.8x with no performance loss com-
pared with the state-of-the-art FPGA solutions for CeNNs.

The remainder of the paper is organized as follows. Section
2 introduces backgrounds and motivation of the paper. The
proposed incremental quantization framework for CeNN and
the optimized hardware implementation are presented in
Section 3. Experiments and discussion are provided in Section
4 and concluding remarks are given in Section 5.

2 PRELIMINARIES

2.1 Cellular neural networks

Different from the prevalent CNNs superior for classification
tasks, CeNN model is inspired by the functionality of visu-
al neurons, and a mass of neuron cells are connected with
neighbouring ones. Only adjacent cells can interact directly
with each other. This is a significant advantage for hardware
implementation, resulting in much less routing complexity
and area overhead. CeNNs are superior at image processing
tasks that involves sensory functions, such as noise cancella-
tion, edge detection, path planning, segmentation, etc. For
the widely used 2D CeNN with space-invariant templates,
the dynamics of each cell state with an M×N rectangular
cell array [3] are as follows:

�̇�𝑖,𝑗(𝑡) = −𝑥𝑖,𝑗(𝑡) +

𝑁∑︁
𝑘,𝑙=−𝑁

(𝐴𝑘,𝑙(𝑡)𝑦𝑖+𝑘,𝑗+𝑙(𝑡)+

𝐵𝑘,𝑙(𝑡)𝑢𝑖+𝑘,𝑗+𝑙(𝑡)) + 𝐼(𝑡),

(1)

𝑦𝑖,𝑗(𝑡) = 𝑓(𝑥𝑖,𝑗(𝑡)) = 0.5× (|𝑥𝑖,𝑗(𝑡) + 1| − |𝑥𝑖,𝑗(𝑡)− 1|), (2)

where 1 ≤ 𝑖 ≤ 𝑀 , 1 ≤ 𝑗 ≤ 𝑁 , 𝐴𝑘,𝑙(𝑡) is the feedback
coefficient template, 𝐵𝑘,𝑙(𝑡) is the input coefficient template,
𝐼(𝑡) is the bias, and 𝑥𝑖,𝑗(𝑡), 𝑦𝑖+𝑘,𝑗+𝑙(𝑡) and 𝑢𝑖+𝑘,𝑗+𝑙(𝑡) are
the state, output and input of the cell, respectively. Note
that 𝐴𝑘,𝑙(𝑡), 𝐵𝑘,𝑙(𝑡) and 𝐼(𝑡) are time-variant templates, and

Efficient Hardware Implementation of Cellular Neural Networks with Powers-of-Two Based Incremental QuantizationNCS ’17, July 17–19, 2017, Knoxville, TN, USA

𝑡 can be removed when time-invariant templates are used.
For efficient implementation on a digital platform (e.g., CPU,
GPU, FPGA), discrete approximation of CeNN is obtained by
applying forward Euler approximation as shown in Equations
3, 4 and 5.

𝑥𝑖,𝑗(𝑡) ∼= (𝑥𝑖,𝑗(𝑛+ 1)− 𝑥𝑖,𝑗(𝑛))/∆𝑡. (3)

𝑥𝑖,𝑗(𝑛+ 1) = 𝑥𝑖,𝑗(𝑛) + ∆𝑡(−𝑥𝑖,𝑗(𝑛) + 𝐼(𝑛) +

𝑁∑︁
𝑘,𝑙=−𝑁

(

𝐴𝑘,𝑙(𝑛)𝑦𝑖+𝑘,𝑗+𝑙(𝑛) +𝐵𝑘,𝑙(𝑛)𝑢𝑖+𝑘,𝑗+𝑙(𝑛))).

(4)

𝑦𝑖,𝑗(𝑛) = 𝑓(𝑥𝑖,𝑗(𝑛)) = 0.5×(|𝑥𝑖,𝑗(𝑛)+1|−|𝑥𝑖,𝑗(𝑛)−1|). (5)

Delayed CeNN is a special type of CeNN described by
adding

∑︀𝑁
𝑘,𝑙=−𝑁 (𝐷𝑖,𝑗(𝑛)𝑔(𝑥𝑘,𝑙(𝑛), 𝑦𝑘,𝑙(𝑛), 𝑢𝑘,𝑙(𝑛)) to Equa-

tion 4, where 𝑔 is usually a piece-wise constant function.
Delayed CeNN will also be considered in this paper when the
effectiveness of incremental quantization is discussed. Please
refer to [3] for details. For the mainstream image size with
1920×1080 pixels, the total complexity is 1920×1080×39×100=8.1×109

operations with 100 iterations (19 multiplications and 20 addi-
tions in each iteration). This warrants algorithms to speedup
the computations.

2.2 Template Learning Algorithm and
PSO Algorithm

Template learning is a widely studied and applied method
to find satisfactory templates for CeNN-based applications,
in which Genetic Algorithm (GA) and Particle Swarm Op-
timization (PSO) are two representatives. PSO is adopted
in this paper, while GA and other template learning method
are also compatible with the framework to be proposed.

PSO finds solutions in a heuristic way by searching the
solution space with multiple particles (swarm of potential so-
lutions). In each iteration, PSO performs position update and
object function calculation. Inspired by the social behavior
of animals, the position update of each particle is affected by
its past best position and the position of the current global
best position as depicted by Equation (6),

𝑝𝑖,𝑑(𝑛+ 1) = 𝑝𝑖,𝑑(𝑛) + {𝑤 × 𝑣𝑖,𝑑(𝑛) + 𝑐1𝑟1

×(𝑝𝑏𝑖,𝑑 − 𝑝𝑖,𝑑(𝑛)) + 𝑐2𝑟2 × (𝑔𝑏𝑑 − 𝑝𝑖,𝑑(𝑛))}.
(6)

where 1 ≤ 𝑖 ≤ 𝑁 , 1 ≤ 𝑑 ≤ 𝐷, 𝑁 is the size of particles, 𝐷 is
the dimension of each particle, 𝑐1 and 𝑐2 are the acceleration
coefficients, and 𝑟1 and 𝑟2 are random numbers with uniform
distribution. 𝑝𝑖(𝑛 + 1) and 𝑝𝑖(𝑛) are the positions of the
𝑖th particle in iteration 𝑛 and 𝑛 + 1, respectively. 𝑝𝑏𝑛 is
the best position that the 𝑖th particle ever searches, and
𝑔𝑏 is the current best position among all particles. Inertia
weight 𝑤 controls the balance of the search algorithm between
exploration and exploitation. A bound of [𝑚𝑖𝑛𝑑, 𝑚𝑎𝑥𝑑] is
introduced for 𝑝𝑖,𝑑 to limit the solution space. The object
function for particles taking positions as input is designed
according to applications.

b b b
b b b

b b

1

1 1

1

2

0b0

0 0 How to sort during incremental quantization?

b0 >b1(4x) (4x)

b2(1x) b1(4x)>Or
>b2(1x)

b0(4x)>
Or ...

Figure 1: CeNN template for binary image noise can-
cellation application.

2.3 Motivation

While hardware oriented memory/computation compression
and optimization of CNNs have been extensively studied
recently [4][11] [26][21][23][29], little has been explored for
CeNNs where memory consumption is not a problem and the
focus is only on computational complexity.

The main difference between CeNNs and CNNs is that in
CeNNs the parameters are coupled. The weights in CNNs
are irrelevant, which means that each weight can change
without affecting others. However, for CeNNs some param-
eters share the same values. For example, in Figure 1, a
CeNN template (template B) for binary image noise cancel-
lation [14] is shown. Only three different values exist for the
nine parameters. As such, in [29] the weights of CNNs are
incrementally quantized in an order simply based on their
magnitudes (pruning-inspired strategy). The same strategy
may not work well for CeNNs, as a parameter with small
magnitude may repeat multiple times thus playing a more
important role than a parameter with a large magnitude but
appearing only once. Furthermore, the training process of
CNNs is mathematically optimal, while that of CeNNs is
heuristic. This will also influence the performance of quanti-
zation strategies. Finally, the sparsity and repetition existing
in CeNN templates provide some additional opportunity for
further improvement when implemented in hardware.

In the next section, we will take the above differences
into consideration and tailor a few quantization strategies
that may work best for CeNNs. The implementation tricks
considering CeNN template sparsity and repetition will also
be discussed.

3 INCREMENTAL QUANTIZATION
AND HARDWARE
IMPLEMENTATION

In this section, we present the incremental quantization frame-
work for CeNN followed by the details of the hardware im-
plementation.

3.1 Incremental Quantization

The proposed incremental quantization framework is an iter-
ative process as shown in Figure 2. Each iteration completes
three tasks: parameter partition, parameter quantization, and
incremental re-training. We assume that as a starting point,
we have all parameters in the original templates before quan-
tization well trained. An illustrative example of the process
is shown in Figure 3 to facilitate understanding.

NCS ’17, July 17–19, 2017, Knoxville, TN, USA B. Trovato et al.

All parameters

are quantized?

No

Yes

Initial parameters

Incremental re-training

 (fix quantified parameters during training)

Parameter quantization with

the selected parameters

Parameter partition to

select some parameters

Done

Figure 2: The flowchart of incremental quantization.

-0.56

-7.67

-0.38 1.74 1.93

2.56 0.27 3.71

-0.98 -7.67 -0.86

0.23 1.40 2

-0.41 2 2

-2 1.04

-2

1

2

0

2 -1.57 2

2.79 2 2

-2 -2 2

-2

1

2

0 3

-2

0

2 -2 2

2.79 2 2

-2 -2 2

-2

1

2

0 3

-2

0

1 2 -2 2

2 2 2

-2 -2 2

-2

1

2

0 3

-2

0

1

2

Pruning

0.58 0.11 2.14

2.45 -3.87 3.98

-1.10 2.57 -0.33

-0.01 0.97 2

3.49 -2 2

-2 -0.54 1.99

1

2 2

0

0 2 2

2 -2 2

-2 2

1

2 2

0

0

2

1

0 2 2

2 -2 2

-2 -2 2

1

2 2

0

0

2

-1 1

0 2 2

2 -2 2

-2 -2 2

1

2 2

0

0

2

-1 1

A

B

3.58 3.78

Figure 3: An example of the proposed incremental
quantization framework. In each iteration, parame-
ter partition, parameter quantization and incremen-
tal re-training are performed sequentially. Green
cells represent quantized parameters.

3.1.1 Parameter partition. This task selects a subset of
parameters not yet quantized (un-quantized parameters) to
perform quantization. Two knobs exist in this task: parameter
priority and batch size.

For the first knob, the pruning-inspired (PI) strategy has
been well explored in quantization of CNNs [29], based on the
consideration that weights with larger magnitudes contribute
more to the result and thus should be quantized first. However,
the parameters in CeNNs have some unique characteristics
which have been discussed in Section 2.3. In order to tackle
the problem, we propose a nearest neighbor (NN) strategy
and a weighting method for the first knob. The combined
weighted nearest neighbor algorithm takes the number that a
parameter appears in the template, defined as its repetition
quantity (rq) as the reciprocal of the weight, and uses the
difference between the parameter and its nearest power-of-two
as distance to perform a weighted NN algorithm (WNN). The
detail explanation of WNN algorithm is shown in Algorithm 1.
Other combinations such as weighted pruning-inspired (WPI)
strategy adopt the same weighting method but with PI to
form WPI. A total of five strategies PI, WPI, NN (WNN with
all weights set to 1), WNN and a random strategy (RAN)
are compared in the experimental section.

For the second knob, batch size is the number of parameters
selected in each iteration, which will affect re-training speed
and quality. We propose to use two batch sizes, constant and
log-scale. The former selects the same number of parameters
in each iteration, while the latter picks a fixed percentage
from the remaining un-quantized parameters, rounded to the
nearest integer. Compared with constant batch size, log-scale
batch size quantizes more parameters in the first several
iterations and fewer towards the end.

3.1.2 Parameter quantization. Before parameter quanti-
zation, the bit width should be defined first according to
applications. Note that there are millions of parameters for
CNN, and short bit width is always appreciated considering

Algorithm 1 Weighted nearest neighbor strategy

Input: un-quantized parameters 𝑢𝑞𝑖, repeat quantity, 𝑟𝑞𝑖,
selected quantity, 𝑁 , 1 ≤ 𝑖 ≤ 𝑛, 𝑛, the number of un-
quantized parameters
Output: the most important 𝑁 parameters
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = 𝑙𝑜𝑔2 |(𝑢𝑞)|; // get the power of the absolute
value of the un-quantized parameters
for 𝑖 = 1 to 𝑛 do

𝑚𝑑 = (2𝑓𝑙𝑜𝑜𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)) + 2𝑓𝑙𝑜𝑜𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)+1))/2;
if 𝑚𝑑 > |(𝑢𝑞(𝑖))| then

𝑛𝑛𝐷𝑖𝑠𝑡(𝑖) = |(𝑢𝑞(𝑖))| − 2𝑓𝑙𝑜𝑜𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖));
else

𝑛𝑛𝐷𝑖𝑠𝑡(𝑖) = 2𝑓𝑙𝑜𝑜𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖))+1 − |(𝑢𝑞(𝑖))|;
end if

end for
𝑤𝑛𝑛𝐷𝑖𝑠𝑡 = 𝑛𝑛𝐷𝑖𝑠𝑡/𝑟𝑞;
sort 𝑤𝑛𝑛𝐷𝑖𝑠𝑡 in ascending order;
output the first 𝑁 parameters;

memory and computational consumption. However, CeNN
usually has tens to hundreds of parameters (time-variant
templates have more parameters than time-invariant tem-
plates), and bit width has no significant impact on memory
consumption. In addition, with power-of-two conversion mul-
tiplications can be done with logic shifts, and bit width will
also have little impact on computation complexity. The only
impact it will have is on the resource utilization of multipliers.

Suppose the quantization set is designed as depicted in
Equation 7, where 𝑘 and 𝑚 indicate the range of quantization.
The corresponding bit width 𝑏𝑤 is calculated as shown in
Equation 8, where the extra one bit is the sign bit.

𝑞𝑠 = {±(2𝑘, ., 2𝑝, ., 2𝑚), 0}, 𝑘 ≤ 𝑝 ≤ 𝑚, 𝑝, 𝑘,𝑚 ∈ Z. (7)
𝑏𝑤 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔[𝑙𝑜𝑔2(2× (𝑚− 𝑘 + 1) + 1)] + 1. (8)

With the quantization set, a parameter 𝑢𝑞(𝑖) is quantized
as shown in Equation 9. When the absolute value of a pa-
rameter is smaller than 2−𝑘−1, it will become zero after
quantization and get pruned. Lower bit width can prune
more parameters, at the cost of accuracy loss.

𝑢𝑞(𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑝 if 3× 2𝑝−2 ≤ |𝑢𝑞(𝑖)| < 3× 2𝑝−1;

𝑘 ≤ 𝑝 ≤ 𝑚;

2𝑚 if |𝑢𝑞(𝑖)| ≥ 2𝑚;

0 if |𝑢𝑞(𝑖)| < 2−𝑘−1.

(9)

3.1.3 Incremental Re-training Algorithm. Usually, re-training
algorithm is an optimal problem as shown in Equation 10,
where 𝑃 is the set of all the parameters. In incremental re-
training algorithm, the optimal problem is revised as shown
in Equation 11, where 𝑈 and 𝑄 are the sets of un-quantized
and quantized parameters, respectively. 𝑎𝑖 and 𝑏𝑖 are the
lower and upper bounds for both 𝑃𝑖 and 𝑈𝑖, respectively.
Note that 𝑃 = 𝑄 ∪ 𝑈 , and 𝑈 ∩𝑄 = Ø. In each iteration, a
subset of 𝑈 will be quantized and added to 𝑄.

𝑓 = 𝑚𝑖𝑛 𝑜𝑏𝑗(𝑃), 𝑠.𝑡. 𝑃𝑖 ∈ [𝑎𝑖, 𝑏𝑖], 0 ≤ 𝑖 ≤ |𝑃 |. (10)

𝑓 = 𝑚𝑖𝑛 𝑜𝑏𝑗(𝑈,𝑄), 𝑠.𝑡.𝑈𝑖 ∈ [𝑎𝑖, 𝑏𝑖], 0 ≤ 𝑖 ≤ |𝑈 |. (11)

Efficient Hardware Implementation of Cellular Neural Networks with Powers-of-Two Based Incremental QuantizationNCS ’17, July 17–19, 2017, Knoxville, TN, USA

2D Conv

Unit

2D Conv

Unit

+

bias
f(x)

U i+k,j+l

Bk,l

A

Δt

S2 +

 x (n)i,j

 x (n+1)i,j

y (n)i+k,j+l

i+k,j+l

y (n)i+k,j+l

y (n+1)i+k,j+l

 x (n+1)i,j

U i+k,j+l

Reg Bank
y (n)i+k,j+l

S1

+

+

Data

Scheduler Coefficient counter

Ak,l
y (n)i+k,j+l∑

Coefficients

TimeVariant

adder
M

U
X

M
U

XModules in this area

can be eliminated for

some configurations

S Shifter

+ Adder

k,l

U

FIFO

(n)(n)

(n)

(n)

Figure 4: Architecture of the optimized stage design.
𝑄 will be fixed during the re-training process and only 𝑈

is used for space searching. After multiple iterations, all the
required parameters are quantized. It should be noted that
the bias 𝐼(𝑛) in Equation 4 for CeNN is not required to be
quantized as it is not involved in multiplication. Therefore,
another re-training iteration is required for the optimal bias
when all the required parameters are quantized.

3.2 Efficient Hardware Implementations

We base our work on the state-of-the-art FPGA CeNN imple-
mentations [17][27][28], which is expandable, highly parallel
and pipelined. The basic element of the architecture is the
stage module which handles all the processes in one iteration
corresponding to Equation 4 for 1 ≤ 𝑖 ≤ 𝑀 , 1 ≤ 𝑗 ≤ 𝑁 .
Multiple stages are connected sequentially for multiple itera-
tions to form a layer, which processes the input in a pipelined
manner. Furthermore, multiple layers can be connected se-
quentially for more complex processing or be distributed in
parallel for a higher throughput. Note that First In First Out
(FIFO) are used between adjacent stages to store the tempo-
rary results of each stage (or each iteration), and they are
configured as single-input multiple-output memories. Please
refer to FPGA implementations in [17][27] for more details.

Our efficient hardware implementation focuses on the op-
timization of the stage design as shown in Figure 4. Two
optimizations are performed: multiplication simplification
and data movement optimization. First, with incremental
quantization, simplification can be achieved by replacing
multiplications with shift operations. The detailed hardware
implementation will be discussed in Section 3.2.1. Second,
when FPGA resource is extremely limited (e.g. for low-end
FPGAs), data movement optimization can be performed u-
tilizing the sparsity and repetition in CeNN templates. As
will be discussed later in Section 3.2.2, in many applications
CeNN templates naturally involves zero or repeated parame-
ters. With incremental quantization, more zeros are yielded
leading to higher sparsity and the small quantization set
introduces a larger number of repetitions. Data movemen-
t optimization can minimize the number of computations
needed. The details will be discussed in Section 3.2.2.

The optimized stage can be configured for both time-
invariant templates and time-variant templates. Note that
the FPGA implementation [27] is dedicated to CeNN with
time-invariant templates, while [17] is for time-variant. The

Table 1: Comparison of resource utilization between
18-bit multipliers implemented using shifter modules
of various configurations 𝑆1(𝑚) and 𝑆2(𝑚) (with dif-
ferent 𝑚 as defined in Equation 7, 𝑘=-𝑚 for 𝑆1, and
𝑘=0 for 𝑆2) and a direct implementation of an 18-bit
multiplier (Mult.) using LEs and registers.

Module 𝑆1(0)𝑆1(1)𝑆1(2)𝑆1(3)𝑆1(4)𝑆1(5)𝑆2(7)𝑀𝑢𝑙𝑡.

LEs 39 44 50 80 109 105 80 676

Registers 39 42 45 47 50 52 75 486

Total number of non-zero value

T
e

m
p

la
te

 Q
u

a
n

ti
ty

0 1 2 3 4 5 6 7 8 9
0

20

40

60

(a)

Number of repetitions in a template

T
e

m
p

la
te

 Q
u

a
n

ti
ty

0 1 2 3 4 5 6 7 8 9
0

50

100

(b)
Figure 5: Illustration of (a) sparsity and (b) repeti-
tion characteristic with 174 CeNN templates.

S

+
Coefficients

M
U

X
M

U
X

0 a 0
a a a
0 a a

1

1 1

1

2

b b b
b b b
b b b
4 65

1 32

7 98 3 A

a a a2 3 1b4 b2

b8 b9 b5

b6

Cycle

1

Cycle

2

Cycle

3

Cycle

4
Cycle

1

Cycle

2

Cycle

3, 4A

Figure 6: Illustration of sparsity-induced and
repetition-induced optimizations.

𝑇 𝑖𝑚𝑒𝑉 𝑎𝑟𝑖𝑎𝑛𝑡 part in Figure 4 is specific for time-variant
templates, and can be eliminated in the configuration for
time-invariant ones.

3.2.1 Shifter Module. In Figure 4, shifter 𝑆1 is for mul-
tiplications in CeNNs and 𝑆2 is for discrete approximation
involved with ∆𝑡 in Equation 4. Usually ∆𝑡 is very small, and
the hardware implementation of 𝑆2 in this paper is designed
to support ∆𝑡=2𝑠, where −7 ≤ 𝑠 ≤ 0, 𝑠 ∈ Z. Note that when
∆𝑡 is configured to 20 or 1, the computation is transformed
to discrete CeNN [7].

Table 1 provides an illustrative comparison of resource
utilization between multipliers implemented using shifter
modules of various configurations and a direct implementa-
tion of multiplier using LEs and registers. It can be noticed
that the shifter module consumes much fewer resources than
the general implementation, such that more multiplications
can be placed on FPGAs for higher performance and speed.
It should be pointed out that multiple shifters can be adopted
in the 2D convolutional module.

3.2.2 Data Scheduler Module. Data scheduler module ex-
ploits the sparsity and repetition of parameters in CeNN
templates. We analyzed 87 tasks from 79 applications [12],
and totally 174 templates are examined (each task has two

NCS ’17, July 17–19, 2017, Knoxville, TN, USA B. Trovato et al.

Table 2: Configuration of PSO algorithm.

𝑁 𝑐1 𝑐2 𝑤 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑖𝑛𝑑 𝑚𝑎𝑥𝑑

10 1.4 1.2 0.8 500 −2𝑚 2𝑚

templates: template 𝐴 and template 𝐵). All the templates
are 2D 3×3 each having nine parameters. The corresponding
sparsity and repetition are shown in Figure 5(a). In Figure
5(a), we discover that a majority of templates have zero
values, and more than half have only three or less non-zero
parameters. Therefore, ignoring multiplications with zeros
will give a significant improvement in efficiency.

Figure 5(b) depicts the histogram of the parameter rep-
etition in all the 174 templates. We can see that in most
of the templates, about 5-6 parameters are repeated values.
With repeated parameters, we can also take advantage of
the associative law for repetition-induced optimization, e.g.,
𝑎1 × 𝑏1 + 𝑎1 × 𝑏2 + 𝑎1 × 𝑏3 = (𝑏1 + 𝑏2 + 𝑏3)× 𝑎1, and hence
three multiplications are optimized to only one.

Note that these optimizations seem to be straightforward
and automatic in software synthesis, but for hardware imple-
mentations detailed attention is needed. An illustration of
optimization with sparsity and repetition is shown in Figure
6. With sparsity-induced optimization, we only take the non-
zero parameters into consideration, and three multiplications
can be eliminated. An adder (only consumes 10 LEs in the
design) is utilized to calculate the sum 𝐴 of 𝑏2, 𝑏4 and 𝑏6 in
parallel with the shifter module. The shifter module calcu-
lates 𝑏5×𝑎2, 𝑏9×𝑎3, and 𝑏8×𝑎1 in the first three cycles, and
computes 𝐴×𝑎1 in the forth. Thus, totally it takes four cycles
rather than nine cycles to calculate Equation 8. Specifically,
sparsity-induced optimization reduces the computation time
from nine cycles to six, and repetition-induced optimization
reduces it from six to four.

The power of sparsity-induced and repetition-induced op-
timizations varies with different applications. Note that if
the number of shifters adopted in the 2D convolution module
is larger than one, repetition-induced optimization can be
eliminated as it contributes much less compared with the
shifters. If the number of shifters equals that of the coef-
ficients which is also the situation to achieve the highest
throughput, repetition-induced optimization can also be e-
liminated as all multiplications can be processed in only one
cycle. Therefore, the two optimizations are only for situations
with very limited resources.

4 EXPERIMENTS

In this section, we first evaluate the performance of various
incremental quantization strategies discussed in Section 3.
Then we implement the quantized CeNNs on FPGAs and
compare their speed with state-of-the-art works.

4.1 Performance Evaluation

We choose three applications, i.e., binary image noise cancella-
tion, grey image noise cancellation, and texture segmentation.
A total of 10 incremental quantization frameworks are eval-
uated: five partition strategies (RAN, PI, WPI, NN (WNN
with all weights set to 1), and WNN) in combination with

Ideal output
Input 5%

contaminated

Input 10%

contaminated

Input 15%

contaminated

Input 20%

contaminated

Figure 7: Training images for binary image noise can-
cellation.

C L C L C L C L C L
RAN PI WPI NN WNN

Original template Quantized templates

30

35

40

45

P
S

N
R

 (
d

B
)

(a) 𝑚=2, 𝑘=-2

0 1 2 3 4
40

42

44

P
S

N
R

 (
d

B
)

Original

template

Quantized

templates with m

(b) NN-L, 𝑘=-𝑚

Figure 8: Performance comparison between tem-
plates with various (a) strategies and (b) quantiza-
tion sizes 𝑚 for binary image noise cancellation.

two batch sizes (constant and log-scale). For compact pre-
sentation, we use postfix -C and -L to denote constant and
log-scale batch sizes, respectively. For constant batch size, we
set the size to 20% of the total parameters. While for log-scale
batch size, we set it to half of the remaining un-quantized
parameters. We discuss five quantization set sizes with 𝑚 =0,
1, 2, 3, 4 and 𝑘 = −𝑚 (see Equation 7). The evaluations of
the three applications are presented in Sections 4.1.1-4.1.3,
and the detailed result discussion is given in Section 4.1.4.

The parameters of PSO algorithm in Equation 6 is shown
in Table 2. The object function designed according to appli-
cations will be discussed in the following sections.

4.1.1 Binary image noise cancellation. The objective func-
tion for binary image noise cancellation in PSO re-training is
shown in Equation 12, where 𝑜𝑢𝑡𝑝𝑢𝑡 and 𝐼𝑑𝑒𝑎𝑙- 𝑂𝑢𝑡𝑝𝑢𝑡 are
output images of CeNN processing on input images with noise
and desired output images, respectively, and 𝑡 is the number
of training pairs. The pattern structures of the 3×3 templates
𝐴 and 𝐵 are as follows: 𝐴 = {0, 𝑎0, 0; 𝑎0, 𝑎1, 𝑎0; 0, 𝑎0, 0}, and
𝐵 = {𝑎2, 𝑎3, 𝑎2; 𝑎3, 𝑎4, 𝑎3; 𝑎2, 𝑎3, 𝑎2}. The training images are
corrupted with salt and pepper noise as shown in Figure 7,
where different levels of salt and pepper noise are added to
the ideal input image. The test images are from Hlevkin test
images collection [10], and gray images are transformed to
binary format with contaminations of 5%, 10%, 15% and 20%
salt and pepper noises. The peak signal-to-noise ratio (PSNR)
is used to evaluate the quality of the processed images.

𝑜𝑏𝑗 =

𝑡∑︁
𝑖=1

(𝑜𝑢𝑡𝑝𝑢𝑡𝑖 − 𝐼𝑑𝑒𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑖)
2. (12)

We fix the quantization size using 𝑚 = 2 and 𝑘 = −𝑚, and
evaluate all 10 incremental quantization frameworks. The
results are depicted in Figure 8(a). From the figure we can
observe that the quantized templates achieve similar PSNR
compared with the original template without quantization.
The lowest PSNR is only 3 dB lower than that with the orig-
inal templates. Interestingly, the highest PSNR is achieved
with NN-L strategy, which has an even better performance
than the original template. Note that generally PI strategy
achieves the best performance for CNNs [29]. However, NN-L

Efficient Hardware Implementation of Cellular Neural Networks with Powers-of-Two Based Incremental QuantizationNCS ’17, July 17–19, 2017, Knoxville, TN, USA

0 1.8527 0

1.8527 0.1693 1.8527

0 1.8527 0

0.48 1.032 0.48

1.032 1.8527 1.032

0.48 1.032 0.48

0 2 0

2 2 2

0 2 0

2 2 2

2 2 2

2 2 2

2 2-2

2

2

0 02

-1 -10

-1 -10

A= B= A= B=

I=0.2913

I=0.5012

Original templates Optimal quantized templates

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
30

40

50

Image ID

P
S

N
R

 (
d

B
)

Original templates

Optimal quanized templates

Figure 9: Performance comparison between the opti-
mal quantized templates and the original templates
for binary image noise cancellation. The image ID
and the image correspond as follows: (1, airfield), (2,
barbara), (3, boats), (4, bridge), (5, cablecar), (6,
camera), (7, cornfield), (8, fingerprint), (9, flower),
(10, fruits), (11, girl), (12, goldhill), (13, lena), (14,
man), (15, monarch), (16, pens), (17, pepper), (18,
sailboat), (19, soccer), (20, yacht).

Ideal output
Input 5%

contaminated

Input 10%

contaminated

Input 15%

contaminated

Input 20%

contaminated

Figure 10: Training images for grey image noise can-
cellation.

35

36

37

P
S

N
R

 (
d

B
)

C L C L C L C L C L
RAN PI WPI NN WNN

Original template Quantized templates

(a) 𝑚=2, 𝑘=-2

0 1 2 3 4
30

35

P
S

N
R

 (
d

B
)

Original

templates

Quantized

templates with m

(b) PI-L, 𝑘=-𝑚

Figure 11: Performance comparison between tem-
plates with various (a) strategies and (b) quantiza-
tion sizes 𝑚 for grey image noise cancellation.

strategy obtains the best performance for CeNN in binary
image noise cancellation application. The optimal templates
and the original templates are shown in Figure 9, and their
detailed comparisons on the 20 test images are also presented.
It can be observed that the PSNR of the optimal templates
remains higher than that of the original template across all
the images. The impact of batch sizes is presented in Figure
8(b) with the optimal partition NN-L. No distinct tendency
exists between PSNR and 𝑚, and note that even with 𝑚 = 0
corresponding to the quantization set with only three values
(-1, 0, 1), we can still achieve a higher PSNR than that with
the original templates without quantization.

4.1.2 Grey image noise cancellation. The configuration for
grey image cancellation is the same as that for binary im-
age noise cancellation. The pattern structures of the 3×3
Delayed CeNN templates 𝐴, 𝐵 and 𝐷 are as follows: 𝐴 =
{0, 0, 0; 0, 𝑎0, 0; 0, 0, 0}, 𝐵 = {𝑎1, 𝑎1, 𝑎1; 𝑎1, 𝑎1, 𝑎1; 𝑎1, 𝑎1, 𝑎1; },
and 𝐷 = {𝑎2, 𝑎2, 𝑎2; 𝑎2, 0, 𝑎2; 𝑎2, 𝑎2, 𝑎2; }. The training im-
ages are shown in Figure 10.

0 0 0

0 0.2339 0

0 0 0

1 1 1

1 1 1

1 1 1

A B
I= -1.0198

I=-1.6899

Original templates Optimal quantized templates

1 1 1

1 1 1

1 1 1

D

0.0019 0.7735

0 0 0

0 2 0

0 0 0

1 1 1

1 1 1

1 1 1

A B
1 1 1

1 1 1

1 1 1

D

(-2) 1-2 -2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
30

35

40

Image ID

P
S

N
R

 (
d

B
)

Original templates

Optimal quantinized templates

Figure 12: Performance comparison between the op-
timal quantized templates and the original templates
without quantization for grey image noise cancella-
tion. See the caption of Figure 9 for details of image
ID.

4 training image (74×56) Test image (296×222)

Figure 13: Training and testing images for texture
segmentation.

70

80

90

C L C L C L C L C L
RAN PI WPI NN WNN

Original template Quantized templates

C
la

s
s

if
ic

a
ti

o
n

A
c
c

u
ra

c
y

 (
%

)

(a) 𝑚=2, 𝑘=-2

0 1 2 3 4
80

85

90

C
la

s
s
if

ic
a
ti

o
n

A
c
c
u

ra
c
y
 (

%
)

Original

template

Quantized

templates with m

(b) WPI-L, 𝑘=-𝑚

Figure 14: Performance comparison between tem-
plates with various (a) strategies and (b) quantiza-
tion sizes 𝑚 for texture segmentation.

The same setting of quantization with binary image noise
cancellation is used, and the results are depicted in Figure
11(a). From the figure we can note that the quantized tem-
plates still achieve similar PSNR compared with the original
template without quantization. The lowest PSNR this time
is only 1.5 dB lower than that with the original templates.
The highest PSNR is achieved with PI-L and WPI, both
resulting in the same quantized template with an even better
performance than the original template. In this application,
interestingly the best strategy is PI, the same as that in
CNNs. The optimal templates for the highest PSNR and the
original templates are shown in Figure 12, and their detailed
comparisons on the 20 test images are also presented. Note
that the optimal templates cannot always get a higher PSNR
than the original templates for the 20 images. The impact
of batch sizes is presented in Figure 11(b) with the optimal
partition PI-L. Note that even with 𝑚 = 0 corresponding to
the quantization set with only three values (-1, 0, 1), we can
still achieve a high PSNR which is about 5.2 dB lower than
that with the original templates.

4.1.3 Texture segmentation. The training and testing im-
ages are shown in Figure 13. The object function adopted

NCS ’17, July 17–19, 2017, Knoxville, TN, USA B. Trovato et al.

0

0.2

0.4

0.6

-0.366 3.894 -1.917

-1.445 0.632 1.754

3.722 -0.770 1.622

3.886 1.680 1.417

2.032 -0.161 1.622

-3.293 -3.950 -0.257

-2 2 -2

2 -2 2

2 -2 2

2 2 -2

2 2 2

-2 -2 2

1 11 1 -10

2 21

2 12

A= B=

A= B=

I= -1.886

I= 0.413

Original templates

Optimal quantized templates
1 2 3 4 1 2 3 4

Textures Textures

Original

templates
Optimal quantized

templates

G
re

y
 v

a
lu

e

0.102

0.105

0.102

0.158

0.158

0.149

0 12

2 22

Figure 15: Performance comparison between the op-
timal quantized templates and the original templates
without quantization for texture segmentation.

from [24] is shown in Equations 13 and 14, where 𝑄𝑘 is
the area of the 𝑘th texture, 𝐺𝑘 is the average gray-scale
of the 𝑘th texture in the output numbered in ascending or-
der of gray-level, and 𝑔𝑖,𝑗|𝑘 is the local average gray-level.
A window size of 35 × 35 is adopted to calculate 𝑔𝑖,𝑗|𝑘.
The pattern structures of the 3×3 templates 𝐴 and 𝐵 are
as follows: 𝐴 = {𝑎0, 𝑎1, 𝑎2; 𝑎3, 𝑎4, 𝑎5; 𝑎6, 𝑎7, 𝑎8}, and 𝐵 =
{𝑎9, 𝑎10, 𝑎11; 𝑎12, 𝑎13 , 𝑎14; 𝑎15, 𝑎16, 𝑎17; }.

𝑜𝑏𝑗 = (1−𝑚𝑎𝑥
𝑘

(
1

𝑄𝑘

∑︁
𝑖,𝑗|𝑘

𝑒𝑘(𝑖, 𝑗))×𝑚𝑖𝑛
𝑘

(𝐺𝑘 −𝐺𝑘−1). (13)

𝑒𝑘(𝑖, 𝑗) =

{︃
0 if (𝐺𝑘−1 +𝐺𝑘)/2 < 𝑔𝑖,𝑗|𝑘 < (𝐺𝑘 +𝐺𝑘+1)/2;

1 else .

(14)

The same setting of quantization with the above two appli-
cations is used, and the results are depicted in Figure 14(a).
From the figure we can observe that the quantized templates
achieve similar accuracy compared with the original tem-
plates without quantization. The lowest accuracy is about
16% lower than that with the original templates. The highest
accuracy is achieved with WPI and WPI-L, both resulting in
the same quantized templates with a better performance com-
pared with the original templates. The optimal templates for
the highest accuracy and the original templates are shown in
Figure 15, and their detailed comparisons are also presented.
The impact of batch sizes is presented in Figure 14(b) with
the optimal partition WPI-L. Note that even with 𝑚 = 0
corresponding to the quantization set with only three values
(-1, 0, 1), we can still achieve a high accuracy which is about
3.2% lower than that with the original templates.

4.1.4 Discussion. From the experiments on the three ap-
plications, it can be learned that the proposed incremental
quantization framework can generally produce quantized tem-
plates with a similar or even higher performance compared
with the original templates. The optimal quantized templates
for binary image noise cancellation and grey image noise can-
cellation can get a PSNR improvement of 0.5dB and 0.1dB,
respectively, while for texture segmentation, the classification
accuracy is improved by 3%.

The performances of the 10 quantization frameworks for
the three applications vary. It should be highlighted that
unlike CNNs, the optimal strategy of CeNNs depends on
applications. In terms of parameter partition strategy, there

is no clear winner that can always beat the others, and NN-L,
PI-L (or WPI-L), and WPI-L (or PI-L) can achieve the best
templates for binary image noise cancellation, grey image
noise cancellation and texture segmentation, respectively. It
can be interesting in the future to study this in more detail
and figure out a systematic way to decide the optimal strategy.
In terms of batch size, log-scale seems to perform better than
constant in most cases.

The quantization set size has an interesting relationship
with the performance. First, even when the quantization set
is only of three values (-1, 0, 1), the quantized template
can still achieve high performance, which sometimes is even
better than the original template (e.g. in binary image noise
cancellation). Second, there exists an optimal 𝑚 which gives
the best performance. Further increasing 𝑚 will not provide
any performance gain (e.g., in texture segmentation) or may
even result in performance loss (e.g. in gray image noise
cancellation). The value of this optimal 𝑚 depends on the
detailed application and the dataset, which will also be an
interesting future work.

4.2 Speed Evaluation Using FPGAs

In previous section we have evaluated the performance of our
incremental quantization framework in terms of accuracy. In
this section we will evaluate its speed when implemented in F-
PGAs. For a fair comparison with existing works [17][27][28],
we adopt the same configurations of stages and try to place
the maximum possible number of stages utilizing our quan-
tized templates. Note that all the three works share the
same architecture for CeNN computation. The performance
of the implementation is evaluated by equivalent computing
capacity which is the product of number of stages and the
computing capacity of each stage. The proposed efficient
hardware implementation is implemented on an XC4LX25
FPGA. The data width of the input, state, and output (𝑢, 𝑥,
and 𝑦) is configured to be 18 bits. The widely-used template
size 3×3 is adopted. Note that general CeNN is adopted for
the FPGA implementation, and delayed CeNN is not con-
sidered here. Time-variant templates are configured. In the
implementation, multiplication is achieved with embedded
multipliers (more specifically, DSP48 modules on XC4LX25
FPGAs) at first, and shifters are used when there are no more
available embedded multipliers. Considering the routability
of FPGAs, the utilization rate of LEs and registers are con-
strained to be no higher than 80%. Note that since different
quantization frameworks only affects the performance and do
not show significant difference in hardware resource utiliza-
tion, in this part of experiments we simply use WNN-L with
m=5 and k=-5, and other frameworks should yield almost
identical speed.

Three configurations of 2D convolution are discussed: one,
three and nine multipliers. In Table 3, applying our quanti-
zation framework can lead to a 1.2x speedup with increased
use of LEs (by 17%) and registers (by 8%) This allows an
additional 4 stages to be placed, with a speedup of 1.2x.

Efficient Hardware Implementation of Cellular Neural Networks with Powers-of-Two Based Incremental QuantizationNCS ’17, July 17–19, 2017, Knoxville, TN, USA

Table 3: Speed and resource utilization comparison-
s of the state-of-the-art work [28] and ours with
one multiplier (Mult.)/shifter (Shif.) in 2D convolu-
tion module, with sparsity-induced optimization and
repetition-induced optimization. The numbers in the
brackets are the resource utilization rate.

Implementation
State-of
-the-art
(1 Mult.)

Ours
(1 shif.)

Ours
(1 shif.+
sparsity)

Ours
(1 shif.+

repetition)
of stages 24 28 28 24

LEs (×103) 14.6(60%) 18.7(77%) 18.7(77%) 18.4(76%)

Register(×103) 8.8(40%) 10.5(48%) 10.5(48%) 9.9(46%)
Embedded Mult. 48(100%) 48(100%) 48(100%) 48(100%)
Clock F. (MHz) 353 331 331 322
Cycles per pixel 11 11 11 8

Speedup 1 1.2x 1.2x 1.4x

Table 4: Speed and resource utilization comparisons
of the state-of-the-art work [28] and ours with three
and nine multipliers(Mult.)/shifter (Shif.) in 2D con-
volution module. The numbers in the brackets are
the resource utilization rate.

Implementation
State-of
-the-art
(3 Mult.)

Ours
(3 Shif.)

State-of
-the-art
(9 Mult.)

Ours
(9 Shif.)

of stages 6 16 2 7

LEs(×103) 3.8(15%) 19.6(80%) 1.4(5%) 18.2(76%)

Registers(×103) 2.1(10%) 6.5(30%) 0.6(2%) 3.6(17%)
Embedded Mult. 48(100%) 48(100%) 46(95%) 48(100%)
Clock F.(MHz) 337 320 361 343
Cycles per pixel 5 5 1 1

Speedup 1 2.6x 1 3.5x

Further taking sparsity-induced optimization into consid-
eration, a speedup of 1.8x is achieved in the 2D convolution
module with computations involving with template 𝐴 for
binary image noise cancellation. However, no sparsity exists
in template B, and there is no overall speedup, as sparsity-
induced optimization can only yield speedup when sparsity
exists in both templates A and B. Therefore, the speedup
still remain about the same. Yet after the introduction of
repetition-induced optimization, the speedup can be further
increased to 1.4x with slightly reduced resource usage (due
to the reduction of computations needed). Note that these
conclusions are application-specific. Similar conclusions re-
side with texture segmentation. The proposed architecture
achieves a little lower clock frequency due to the high re-
source utilization making placement and routing relatively
more difficult.

For the configuration of 2D convolution with multiple multi-
pliers, sparsity-induced and repetition-induced optimizations
doing very limited optimizations with multiple multipliers
are not involved. As shown in Table 4, the the state-of-the-
art work [28] has a very low resource utilization (2%-15%)
with LEs and registers. With the abundant resources, 10 and
5 more stages can be placed on FPGAs with shifters as a
replacement of multipliers for the implementation configured

Table 5: Speed and resource utilization projections
to high-end FPGAs of the state-of-the-art work [28]
and ours with nine multipliers/shifters in 2D convo-
lution module. The numbers in the brackets are the
resource utilization rate.

Implementation VC7VX-
980T

VC7VX-
585T

Stratix
V E

Stratix
V GS

of stages 352 179 233 291

LEs(×103) 780(80%) 465(80%) 718(80%) 524(80%)

Registers(×103) 170(17%) 93(16%) 133(15%) 128(19%)
Embedded Mult. 3600(100%) 1260(100%) 704(100%) 3926(100%)

Speedup 2.3x 3.3x 7.8x 1.7x

with three and nine multipliers, respectively, resulting in a
speedup of 2.6x and 3.5x.

As the CeNN architecture composed with stage modules
are highly extensible, we make a reasonable projections to
high-end FPGAs to see how the resources available in an
FPGA affect the speedup. According to existing implemen-
tations on FPGAs and resource constraint of 80% LE and
register utilization rate bound, the clock frequencies are as-
sumed to be the same in the comparison. The configuration
of 2D convolution with nine multipliers is adopted, which
has the highest performance. We select four high-end FPGAs
from Altera and Xilinx with about 500,000 to 1,000,000 LEs.
As shown in Table 5, our implementations can achieve a
speedup of 1.7x-7.8x. The highest speedup of 7.8x is due to
the fact that the Stratix V E FPGA has the highest rate of
LEs and embedded multipliers.

5 CONCLUSIONS

In this paper, we propose an efficient hardware implementa-
tions of CeNNs with powers-of-two based incremental quan-
tization. The framework adopts an iterative procedure in-
cluding parameter partition, parameter quantization, and
re-training to produce templates with values being powers of
two. We propose a few quantization strategies based on the
unique CeNN computation patterns. Thus, multiplications
are transformed to shift operations, which are much more
resource-efficient than general embedded multipliers. Further-
more, based on CeNN template structures, sparsity-induced
and repetition-induced optimizations for quantized templates
are also exploited for situations where resources are extremely
limited. Experimental results show that the proposed frame-
work can achieve similar or even slightly better performance
compared with that using original templates without quanti-
zation, and a speedup up to 7.8x can be achieved compared
with the state-of-the-art FPGA implementations. We also
discover that unlike CNNs, the optimal strategy of CeNNs
depends on applications.

REFERENCES
[1] S. J. Carey, D. R. Barr, B. Wang, A. Lopich, and P. Dudek.

Mixed signal simd processor array vision chip for real-time image
processing. Analog Integrated Circuits and Signal Processing,
77(3):385–399, 2013.

NCS ’17, July 17–19, 2017, Knoxville, TN, USA B. Trovato et al.

[2] H.-C. Chen, Y.-C. Hung, C.-K. Chen, T.-L. Liao, and C.-K. Chen.
Image-processing algorithms realized by discrete-time cellular neu-
ral networks and their circuit implementations. Chaos, Solitons
& Fractals, 29(5):1100–1108, 2006.

[3] L. O. Chua and T. Roska. Cellular neural networks and visual
computing: foundations and applications. Cambridge university
press, 2002.

[4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio.
Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[5] M. Duraisamy and F. M. M. Jane. Cellular neural network based
medical image segmentation using artificial bee colony algorithm.
In Green Computing Communication and Electrical Engineer-
ing (ICGCCEE), 2014 International Conference on, pages 1–6.
IEEE, 2014.

[6] O. B. Gazi, M. Belal, and H. Abdel-Galil. Edge detection in
satellite image using cellular neural network. system, 8:9, 2014.

[7] H. Harrer and J. A. Nossek. Discrete-time cellular neural network-
s. International Journal of Circuit Theory and Applications,
20(5):453–467, 1992.

[8] H. Harrer, J. A. Nossek, T. Roska, and L. O. Chua. A current-
mode dtcnn universal chip. In Circuits and Systems, 1994.
ISCAS’94., 1994 IEEE International Symposium on, volume 4,
pages 135–138. IEEE, 1994.

[9] J. Hills and Y. Zhong. Cellular neural network-based thermal
modelling for real-time robotic path planning. International
Journal of Agile Systems and Management 20, 7(3-4):261–281,
2014.

[10] Hlevkin. http://www.hlevkin.com/06testimages.htm, 2017.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Binarized neural networks. In Advances in Neural Information
Processing Systems, pages 4107–4115, 2016.

[12] K. Karacs, G. Cserey, Zarndy, P. Szolgay, C. Rekeczky, L. Kek,
V. Szab, G. Pazienza, and T. Roska. Software library for cellular
wave computing engines. Cellular Sensory and Wave Computing
Laboratory of the Computer and Automation Research Institute,
2010.

[13] S. Lee, M. Kim, K. Kim, J.-Y. Kim, and H.-J. Yoo. 24-gops 4.5-

𝑚𝑚2 digital cellular neural network for rapid visual attention in
an object-recognition soc. IEEE transactions on neural networks,
22(1):64–73, 2011.

[14] H. Li, X. Liao, C. Li, H. Huang, and C. Li. Edge detection of noisy
images based on cellular neural networks. Communications in
Nonlinear Science and Numerical Simulation, 16(9):3746–3759,
2011.

[15] D. Manatunga, H. Kim, and S. Mukhopadhyay. Sp-cnn: A scalable
and programmable cnn-based accelerator. IEEE Micro, 35(5):42–
50, 2015.

[16] G. Manganaro, P. Arena, and L. Fortuna. Cellular neural network-
s: chaos, complexity and VLSI processing, volume 1. Springer
Science & Business Media, 2012.

[17] J. J. Martnez, J. Garrigs, J. Toledo, and J. M. Ferrndez. An
efficient and expandable hardware implementation of multilayer
cellular neural networks. Neurocomputing, 114:54–62, 2013.

[18] J. Muller, R. Wittig, J. Muller, and R. Tetzlaff. An improved
cellular nonlinear network architecture for binary and greyscale
image processing. IEEE Transactions on Circuits and Systems
II: Express Briefs, 2016.

[19] R. Porter, J. Frigo, A. Conti, N. Harvey, G. Kenyon, and
M. Gokhale. A reconfigurable computing framework for multi-scale
cellular image processing. Microprocessors and Microsystems,
31(8):546–563, 2007.

[20] S. Potluri, A. Fasih, L. K. Vutukuru, F. Al Machot, and K. Kya-
makya. Cnn based high performance computing for real time
image processing on gpu. In Nonlinear Dynamics and Syn-
chronization (INDS) & 16th Int’l Symposium on Theoretical
Electrical Engineering (ISTET), 2011 Joint 3rd Int’l Workshop
on, pages 1–7. IEEE, 2011.

[21] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision, pages 525–542.
Springer, 2016.

[22] A. Rodrguez-Vzquez, G. Lin-Cembrano, L. Carranza, E. Roca-
Moreno, R. Carmona-Galn, F. Jimnez-Garrido, R. Domnguez-
Castro, and S. E. Meana. Ace16k: the third generation of mixed-
signal simd-cnn ace chips toward vsocs. IEEE Transactions on
Circuits and Systems I: Regular Papers, 51(5):851–863, 2004.

[23] H. Song, P. Jeff, T. John, and W. J. Dally. Deep compression:
Compressing deep neural networks with pruning, trained quanti-
zation and huffman coding. In 4th International Conference on
Learning Representations, 2016.

[24] T. Szirnyi and M. Csapodi. Texture classification and segmenta-
tion by cellular neural networks using genetic learning. Computer
Vision and Image Understanding, 71(3):255–270, 1998.

[25] H. Wong, V. Betz, and J. Rose. Comparing fpga vs. custom cmos
and the impact on processor microarchitecture. In Proceedings
of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays, pages 5–14. ACM, 2011.

[26] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convo-
lutional neural networks for mobile devices. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 4820–4828, 2016.

[27] N. Yildiz, E. Cesur, K. Kayaer, V. Tavsanoglu, and M. Alpay.
Architecture of a fully pipelined real-time cellular neural network
emulator. IEEE Transactions on Circuits and Systems I: Regular
Papers, 62(1):130–138, 2015.

[28] N. Yildiz, E. Cesur, and V. Tavsanoglu. On the way to a third
generation real-time cellular neural network processor. CNNA
2016, 2016.

[29] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental
network quantization: Towards lossless cnns with low-precision
weights. In 5th International Conference on Learning Represen-
tations, 2017.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cellular neural networks
	2.2 Template Learning Algorithm and PSO Algorithm
	2.3 Motivation

	3 Incremental Quantization and Hardware Implementation
	3.1 Incremental Quantization
	3.2 Efficient Hardware Implementations

	4 Experiments
	4.1 Performance Evaluation
	4.2 Speed Evaluation Using FPGAs

	5 Conclusions
	References

