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Abstract—The rapid development of Internet-of-Things (IoT)
is yielding a huge volume of time series data, the real-time mining
of which becomes a major load for data centers. The computation
bottleneck in time series data mining is the distance function,
which is the fundamental element of many high data mining
tasks. Recently various software optimization and hardware ac-
celeration techniques have been proposed to tackle the chanllenge.
However, each of these techniques is only designed or optimized
for a specific distance function. To address this problem, in
this paper we propose MDA, a high-throughput reconfigurable
memristor-based distance accelerator for real-time and energy-
efficient data mining with time series in data centers. Common
circuit structure is extracted for efficiency, and the circuit can
be configured to any specific distance functions. Particularly, we
adopt the emerging device memristor for the design of MDA.
Comprehensive experiments are presented with public available
datasets to evaluate the performance of the proposed MDA.
Experimental results show that compared with existing works,
MDA has achieved a speedup of 3.5x-376x on performance and
an improvement of 1-3 orders of magnitude on energy efficiency
with little accuracy loss.

Index Terms—Distance Function, Memristors, Time Series,
Data Mining, Data Center.

I. INTRODUCTION

Energy efficiency of data centers has been a primary focus in
the past few years due to their excessive power consumption. On
the other hand, the load on data centers keeps increasing with
the explosion of information technologies. It has been predicted
that by 2020 a major portion of the load will come from
internet-of-things (IoT), which will yield over 4.4 zettabytes
(5.5x102! Bytes) of time series data by 2020 [3]. These time
series data are transmitted to data centers for real-time mining
[14]. It is therefore of utmost interest to explore techniques
that handle time series data with high throughput and high
energy efficiency.

The computational bottleneck of many data mining tasks
such as classification and similarity search is the calculation of
distance function [37], which is used to evaluate the similarity
of two time series. Distance functions have a relatively high
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complexity, yet all data mining tasks will invoke it a huge
number of times. Thus, the calculation of distance functions
consumes a large fraction of the data mining time. For example,
research results show that the computation of distance function
takes up to more than 80% of the runtime for subsequence
similarity search task [40].

Recently, software optimization and hardware acceleration
have been widely exploited for distance functions. Dynamic
time warping (DTW) has been optimized with lower bound
methods [30], field programmable gate array (FPGA) [35]
[40], graphics processing unit (GPU) [35] and application-
specific integrated circuit (ASIC) [23]. Manhattan distance
(MD) has been accelerated with GPU [7]. Longest common
subsequence (LCS), Hausdorff distance (HauD) and Hamming
distance (HamD) have also been accelerated by GPU [28] [19]
[39]. Edit distance (EdD) has been optimized on GPUs [§]
and ASICs [36]. However, each data center handles a variety
of applications which use different distance functions. For
example, a Cisco data center needs to deal with healthcare
[13] and smart city applications [6]. The former adopts HamD
for iris authentication [39] and LCS for electrocardiogram
(ECG) similarity [9], while the latter uses DTW for vehicle
classification [41]. None of these existing works on different
platforms (GPU, FPGA, and ASIC) can work well in this
scenario as they are optimized for a single distance function
only. It remains an open problem in the literature how to design
a reconfigurable accelerator that works for all popular distance
functions with high throughput and high energy efficiency,
which is of ultimate importance in data centers.

Meanwhile, the nonlinear analog dynamics of memristors
has been extensively explored for nanoelectronic memories,
computer logic and neuromorphic/neuromemristive computer
architectures [32] [33] [34]. Recently, memristors have also
been used for query processing [11], tunable approximate com-
puting [12], and distance acceleration [42]. Though these works
also accelerated distance function calculation using memristors
in sub-modules, they focused on specific applications such as
query processing with only one distance function which cannot
achieve high efficiency in the scenario of data centers.

In this paper, we address this problem by putting forward
MDA, a novel reconfigurable memristor-based distance ac-
celerator for high-throughput and high-energy-efficient time
series data mining in data centers [43]. The contribution of
the paper is three-fold: (1) we present a specific analog circuit
design as a unified hardware that can be reconfigured for a
set of distance functions (including DTW, LCS, HauD, EdD,
HamD, MD), and we extract the basic primitives to facilitate
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various distance functions to save chip area; (2) memristors
are adopted in analog circuit design for configurable resistance
and accurate calculation; (3) we perform module and end-to-
end evaluations, and experimental results show that compared
with existing works, our work has achieved a speedup of 3.5x-
376x on performance and an improvement of 1-3 orders of
magnitude on energy efficiency with little accuracy loss.

The remainder of the paper is structured as follows: Section II
describes the background and problem formulation. Section III
presents the distance accelerator architecture and circuit designs.
Module evaluation and end-to-end evaluation are presented in
Section IV and Section V, respectively. The paper is concluded
in Section VI

II. BACKGROUND AND PROBLEM FORMULATION

In this section, the widely adopted six distance functions are
introduced. Dynamic time warping (DTW), Longest Common
Subsequence (LCS) and Edit Distance (EdD) are dynamic
programming methods, which can handle two sequences
with different lengths, while Hamming Distance (HamD) and
Manbhattan distance (MD) only support sequences with the
same length. Hausdorff Distance (HauD) can also support two
sequences with different lengths. In real applications, weight
is introduced as the significance of each element is different.
Interested readers can refer to [29] [17] [5] [44] [27] [24] for
the weighted version of DTW, LCS, MD, HamD, HauD, and
EdD.

Distance functions are used to calculate the similarity
between two sequences. Suppose there are two sequences P
and @ as follow:

P={P,P,.. P, ..Py,},Q={Q1,Q2,....Qj, ..Qn},
ey
where m and n are the length of ) and P, respectively.
Dynamic time warping (DTW): the procedure of DTW

calculation is a dynamic programming based iterates process.

Specifically, DTW is to calculate a shortest warping path
between two sequences P and ), which is derived as shown in
Equation 2, where D is the cumulate distance in the warping
path. w;; is the weight, which equals to 1 for general DTW and
to other values (# 1) for weighted DTW. Smaller DTW (P, Q)
value corresponds to higher similarity. Usually the Sakoe-Chiba
band [30] is adopted for DTW, and its constraint R restricts
the warping path. DTW has been optimized with lower bound
methods [30], field programmable gate array (FPGA) [35] [40],
graphics processing unit (GPU) [35] and application-specific
integrated circuit (ASIC) [23].

Di,j = U/i,j\Pz' - Qj\ + min{Di,jflv Difl,ja Difl,jfl};
Do =0; Do = D;o=o00; 1<i<n; 1<j<m;
DTW(P,Q) = Dy .
2

Longest common subsequence (LCS): LCS is to find the
longest common subsequence of two strings. In order to apply
LCS to time series, threshold is introduced to determine
whether two elements are equal or not. LCS also belongs to
dynamic programming as shown in Equation 3, where Vi, is

2

the contribution of two equal elements. It should be noted that
unlike DTW, smaller LC'S(P, Q) value corresponds to lower
similarity. LCS has been accelerated by GPU [28].
0, if i=0o0r j=0
Li_1j—1+w; jVstep,

if 4,5 >0 and |P; — Q| < threshold
max(L; j—1,Li—15),

if 4,7 >0 and |P; — Q;| > threshold

LCS(P,Q) = Ly m.

Lij =

3)

Edit distance (EdD): EdD is the number of operations
in individual characters to transform one string into another.
Thus, lower EdD value means higher similarity. The permitted
operations include replacement, insertion and deletion. By
introducing threshold, EAD can also handle time series as
shown in Equation 4. EdD has been optimized on GPUs [8]
and ASICs [36].

min(E;_1j + wi—1,Vsteps Fij—1 + Wi j—1Vstep,
Ei 114+ wi—1,;-1Vstep)
if |P;—Qj| < threshold
min(Ei—1,; + wi—1 ; Vstep, Eij—1 + Wi j—1 Vstep,
Ei_1j-1)
if |P; — Q| > threshold

Eio=1, Ey;=j, EdD(P,Q)=Ey,mn.

E;; =

4)

Hausdorff distance (HauD):HauD measures how far two
subsets are from each other. Low HauD value means two sets
are close (high similarity) or each point in one set is close to
each point in another set. The computation of HauD is shown
in Equation 5. HauD has been accelerated by GPU [19].

HauD = mazjc,(minjc,w; ;|1P; — Q;) (5)

Hamming distance (HamD): HamD is the number of
positions at which the corresponding characters are different.
Like LCS and EdD, threshold is adopted for time series. The
calculation process is shown in Equation 6. HamD has been

accelerated by GPU [39].
H = Hi,1 ’Lf |PZ — Qz‘ S threshold
Y Hici +wiVisgep if [P — Q| > threshold — (6)
Hy=0,n=m, HamD(P,Q) = H,.

Manbhattan distance (MD): MD is a simple but rather
popular method for time series [7], which is the sum of absolute
differences in the corresponding positions. The calculation
process is given as shown in Equation 7. MD has been
accelerated with GPU [7].

D(P,Q) =Y wi|Pi=Qil, n=m. (7)

Problem Formulation: From the above discussion it is clear
that any existing accelerator is for a specific distance function
only, and cannot be shared by multiple functions. However,
this is exactly what is needed in data centers. In this paper, we
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Fig. 1: Architecture of the distance accelerator, MDA.

formulate the problem of reconfigurable distance accelerator
as follows: given memristors and basic circuit devices, find
a circuit structure design that can be reconfigured to support
multiple distance functions with high performance, high energy
efficiency and low area consumption.

III. ACCELERATOR ARCHITECTURE
A. Architecture Overview

The proposed MDA comprises four modules: a Digital-to-
Analog convertor (DAC) array, a computation module, a control
and configuration module, and an Analog-to-Digital convertor
(ADC) array as shown in Fig. 1. The DAC and ADC arrays
are used to convert time series data between digital signals and
analog signals. The control and configuration module has two
responsibilities: 1) control the dataflow between modules; 2)
reconfigure circuit connections in the computation module to
perform specific distance functions with the configuration lib.

The configurable computation module calculates the distance
functions. In order to save chip areas, we extract the basic
primitive, the processing element (PE) of the analog circuits
of distance functions. Each PE is compromised of several
basic elements which will be discussed in detail in the next
subsection. The connections between the basic elements in PE is
realized with transmit gates (TGs). All the adopted six distance
functions are aggregated into two structures for the connection
between PEs: matrix structure (for DTW, LCS, HauD and
EdD) and row structure (for MD and HamD) as shown in
Fig. 1. The circuit structures for different algorithms have a
high similarity with each other in matrix and row structure,
respectively. The reuse of op-amps and their corresponding
memristors are labeled as shown in Fig. 3. It can be noticed
that the configuration of connections for the two structures is
relatively simple, and the circuit elements have a high resources
utilization. By configuring each PE and connections between
PEs, the function of specific distance can be achieved. The
details of configurations are discussed in Section III-B. When
the sequence length is larger than the number of PEs in each row
or column, tiling technique will be applied and the throughput
will decrease.

In analog circuits, memristor is used for computation due to
two reasons. First, using memristors as normal resistors enables

Fig. 2: The overall circuit structure of PE.

the fine-tuning of memristance, which contributes to mitigate
the impact of process variation and parasitic resistance. Second-
ly, By setting memristors to specific resistance, computation can
be realized. A typical calculation of memristors is shown in the
row structure in Fig. 1. V,,,; is the weighted sum of the output
of each PE, and the weight is determined by the ratio of M;
(1 < i< k) and M. For general computation of MD, DTW,
LCS, HamD, EdD, and HauD, the ratio of 1 is adopted, and
only the high resistance state (HRS) and low resistance state
(LRS) of memristors are used. Recently, weighted version of
MD [29], DTW [17], LCS [5], HamD [44], EdD [27] and HauD
[24] have been widely adopted for a variety of applications.
In this situation, different ratios between memristors are used,
and memristors need to be set to specific resistance other
than HRS or LRS. The calculation with memristors in the
matrix structure follows the same principle. Within analog
circuits, the computation is conducted in a parallel manner. We
discover that with identical circuit structure, the relations of
outputs in converage state and unconverage state are the same,
which could be used for further optimization. The details of
implementations are discussed in Section III-C.

Note that the nonlinear behavior of the memristor model
is only used for resistance tuning. It is strictly avoided for
accurate computation during normal operation [22], which is
achieved with a low load voltage as discussed in Section IV-B.
Thus, the polarity of memristors will not affect the performance,
which is not indicated in all the figures in the paper.

B. Hardware implementation

1) Circuit of Processing Element (PE): PE can be con-
figured to a variety of distance functions according to the
configuration lib. As shown in Fig. 2, it is compromised of
several basic elements: absolution module, minimum module,
individual subtractor module, control module and connection
module. The absolution module and minimum module are
used to calculate the absolution value of two numbers and the
minimum value of three numbers, respectively. Particularly,
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Fig. 3: PE circuit structures of DTW, LCS, EdD, HauD, HamD and MD. Particularly, HauD has a different PE connection.

the minimum calculation is a combination of subtraction and
maximum calculation. The details of the two operations are
discussed and analysed in detail with specific distance functions.
The control module includes a comparator and a either/or
circuit, which is used to select the appropriate output according
to the input to the comparator. The individual subtractor module
can be configured to subtraction or addition operation. The
connections between the basic elements are realized with the
connection module which is a TG-based sparse array. Specific
connections between the inputs and outputs can be realized by
configuring the TGs. Note that the TG-based array is sparse,
which means that some inputs can only be connected to some
specific outputs. In the TG-based array there exists some diodes
to calculate the maximum value of several inputs as shown in
Fig. 3(d1) and Fig. 3(d2). Note that as each PE is independent
and the connection is flexible, MDA can be configured to
several groups, each of which supports one distance function
calculation.

Compared with accelerating only one distance function, our
reconfigurable approach comes with a cost. We need to add
more circuit devices in each PE to support multiple distance
functions. Also, the connection configuration between PEs
becomes complex resulting with more area consumption. This
is the cost we have to pay to achieve flexibility. Note that data
centers especially benefit from such flexibility.

2) Circuit of Dynamic Time Warping: The DTW calcu-
lation module is shown in Fig. 3(a), which includes three
modules: absolution module, minimum module, and addition
module. The absolution module calculates the absolute value
of (P; — Q;). Two analog subtractors are used for calculating
(P; — @;) and (Q; — F;), respectively. Two diodes are to
output the larger value of the two values. Thus, the output
value is the positive value, which is the absolute value of
(P; — @;). For conditions of P; = @, the output is also
correct. Weight factor w; ; supports weighted DTW, which
can be achieved by configuring memristors M7 and M5 to
My /My = (2 — w; j)/w;, ;. Other memristors are all with the
same resistance.

D; ;= wi,j|Pz‘ - Qj| + min(Di,jflv Difl,j; Difl,jfl)
= w; j|P; — Qj| + {Vee/2 — max(Vee — Dj j—1,

Vee/2=Djj1,Vee/2—Dij-1)} Step 1
= wij|P; — Qj| — {max(Vee/2 = Dij—1, Vee/2

—D; j-1,Vee/2 = D; j_1) — Ve /2}  Step 2

(2]

(®)

The minimum module obtains the minimum value of D; ;_1,
D;_1;, and D;_y j_i. As diodes are perfect for maximum
value calculation, we transform the minimum calculation to a
maximum problem as shown in Equation (8), where V. is the
supply voltage. In Step 1, the minimum problem is converted
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to a maximum problem, which can be easily calculated with
diodes. However, there is a problem in the designs according to
Step 1. With diodes, the input current for the analog subtracter
is fixed to positive, which means there is no negative current.
As a result, the diode works in the cutoff region when the
input is less than V,./4, and there is no current for the input.
Thus, the maximum value for the output is V,./4, which is
insufficient for DTW calculation. Step 2 is introduced to tackle
the problem. The input and V_./2 switch their roles as shown
in Fig. 3(a). Then, the output is the minimum value with a
negative sign, which can be easily solved by converting addition
to substraction.

3) Circuit of Longest Common Subsequence: The PE
circuit of LCS is shown in Fig. 3(b). The calculation of L; ;
depends on the elements of sequences and PEs besides it.

The PE circuit contains two modules: a selecting module
and a computing module. The selecting module fulfills the
calculation of conditions in Equation (3). To determine whether
P; is equal to @5, we first calculate the absolute value of (FP;-
Q;), and then compare the absolute value with a threshold
voltage Vip... If the absolute value is less than the threshold
voltage, we assume that P; is equal to @);, otherwise not. The
TG determines which part should connect to the output.

The computing module is consisted of two parts. The
first part calculates the sum of L;_; ;1 and w; jVi¢ep. The
second part outputs the maximum value of L; ;1 and L;_q ;
with diodes. Weight factor w; ; supports weighted LCS by
configuring memristors My, My, M3, My and Ms. Assuming
My /My = ky, M3 should be set to w;_jk1 M2, and the relation
of My and M5 is Ms/My = (1 + k1)w; ;.

4) Circuit of Edit Distance: Fig. 3(c) shows that the PE
circuit of EdD includes two modules: a computing module and
a minimum module. In the computing module, we have three
computation paths. The first computation path is associated
with E;_4 ;_1, which is the result of the left-lower PE. We
calculate the absolute value of (P; —(@);) and use a comparator
to determine whether P; is equal to Q;. If P; is equal to @),
the output of the comparator will be high and the output of
the first path will be F;_1 ;_1 +w;—1,j—1Vstep, Otherwise will
be E;_1 j_1. The second and the third path share the same
circuit structure, and the outputs are E;_q ; +w;—1,jVi¢ep and
E; j—1 4+ w; j—1Vitep, respectively. Viiep is a unit voltage, and
the exact result can be obtained by dividing E(m, n) by Viiep.
For weighted LCS the configuration of memristors around
op-amp Asz, A4 and As in Fig. 3(c) are the same with that in
Fig. 3(b).

The minimum module calculates the minimum value among
the output of the three paths in the computing module. As
the diodes can easily solve the maximum problem, we use a
subtractor circuit to make it a maximum problem.

The same problem arises here, which also exists in the PE
circuit structure of DTW. The current through the diode must
be in the right direction, which means the output of the diodes
in the maximum module must be higher than V,./2. In order
to solve the problem, we add a buffer at the output of the
diodes to ensure that the output can be lower than V,./2.

5) Circuit of Hausdorff Distance: Fig. 3(d1) shows the
PE circuit structure of HauD, which is compromised of a

Voltage P
| ' n—  —— — — —
50mV- / I 8mv =>.\MD+) I
We can make early |-24...v \/ V(MD,) |
AS0mV- - gecision of the | V(MD;) ¥ I
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|V(MD)|, V(MD)), \I -4omv- T
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\ |
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Fig. 4: Early determination in analog circuits.

computing module and a comparing module. The computing
module is consisted of two steps, the first step is to calculate
the absolute value of (P;-Q);). As explained in Section III-B2,
diodes and V.. are also used here to solve the minimum
problem in the second step.

The comparing module outputs the maximum value of
D(i—1,j) and Voo — w; ;| P; — Q;|. We add a buffer between
the output of diodes and the negative input of As (shown
in Fig. 3(dl)), therefore the output voltage of w; ;|P; — Q|
can be below V_./2. For weighted HauD, the configuration of
memristors My /My = M3/M, = w; ; should be applied.

Fig. 3(d2) shows the PE circuit structure of HauD. Given
Q;, we check every elements of sequence P and calculate the
value of Hau(m, j), which is the maximum value of V. —
w; ;| Pi—Q;| (1 <14 < k)). With the same processing for (); in
sequence @, we have Hau(m, 1), Hau(m,2),..., Hau(m,n).
Then, a converter is used to process each Hau(m, j) in which
the output is the difference of V.. and Hau(m, j). Therefore,
the output of the converter is the minimal w; ;| P; — Q| where
7 is fixed and ¢ varies. Finally, we use diodes to output the
maximum value of all minimal w; ;|P; — Q;|, and the result
is the HauD of P and ().

6) Circuit of Hamming Distance: The PE circuit structure
of HamD is shown in Fig. 3(e). The absolute value calculation
module and a comparator are used to calculate whether P; is
equal to Q;. If P; is equal to );, the output of the comparator
will be high, and the output of Ham/[i] will be Vyye,,. Otherwise,
the output will connect to the ground, and Ham/[i] will remain
zero. When all PEs finish computation, an analog adder is
adopted to add all Hamli], and the output is the HamD of P
and @. Weighted HamD is achieved by configuring memristors
to My/Mj, = wy in the row structure in Fig. 1.

7) Circuit of Manhattan Distance: Fig. 3(f) shows the PE
circuit structure of MD, which is the subset of that of HamD.
Like HamD, when all the PE fulfill computation, we use an
analog adder to add all DJ[i], and the output is the MD of P
and (). For weighted MD, the configuration is the same with
weighted HamD.

C. Implementation Details

1) Optimization: In the row structure, each input has an
equal position to each other, and the circuit structure for each
input is identical. With this character, early decision can be
achieved, which means HamD and MD can process sequences
with a shorter time rather than the convergence time. The
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detail is illustrated with MD in Fig. 4. It can be noted that
the relation of |V(MD,)|, |V(MDs)| and |V (M Ds3)| in the
unconvergence state and the convergence state are the same.
This feature in analog domain is extremely useful for many
data mining tasks. For example, in classification we can obtain
the value at the Early Point shown in Fig. 4. The sequence
with the minimum value obtained at the Farly Point is also
the one with the minimum value obtained in the convergence
state.

2) Resistance Tuning: All the resistances in the distance
accelerator are memristors. Thus, resistance tuning is required
to make appropriate configurations for efficient computation
[21]. This is also useful to minimize the influence of parasitic
resistance. The process is presented as follows, which includes
two parts, analog subtractor and analog adder as shown in
Fig. 5. Note that resistance tuning is also performed when
the configuration remains for some time as memristance
leakage/drift exists in memristors. Thus, timing and power
consumption will also increase slightly due to the extra
configuration. Note that we don’t take writing time (including
wait time [25], about 1/3 to 1/4 of writing time) for resistance
tuning into consideration in this paper. It should be pointed
out that writing/tuning is only performed periodically with a
relative large period for distance function calculation in the
scenario of data centers. Thus, writing time including wait time
will only increase the overall processing time slightly, and has
very small influence on the performance.

For analog subtractors as shown in Fig. 5(a), we set y; =0
and yo = 0 in the first step. The four ports, x1, x2, x3 and x4
are used to modulate M, Ms, M3 and My, respectively. In the
second step, we verify the ratio of M; /My and Ms/M,. When
verifying M7 /Ms, we set yo = 0 and z; = 0.1. By measuring
x9, the radio of M;/Ms can be verified. For example, for
analog subtractors in Fig. 5(a), My and M5 are set to HRS.
Thus, if zo = 0.1V, M; /My = 1 is configured successfully.
When verifying M3/M,, we set x3 = 0.1V and x4 = 0.
By measuring y», the radio of M3/M, can be verified. If
verification is not successful, the first step will be applied to
further modulate corresponding memristors. The two steps can
be iterated several times for better precision.

For analog adders as shown in Fig. 5(b), we set no = 0 in
the first step. The k + 1 ports, mq, ma,..., my, and myy, are
adopted to modulate My, Mos,..., M} and My 1, respectively.
In the second step, M} is regarded as the reference memristor,
which is used to verify other memristors. We will set m; =
0.1V and measure nq to verify M /M. If ny = 0.1V, the
configuration of M; = M}, is achieved. Otherwise, M; will
be modulated according to the offset to the configuration. The
process of modulation and verification can be iterated for high
precision. The above tuning process for M7 will be applied to
other memristors.

3) Impact of Process Variation: Considering process vari-
ation, the actual resistance of memristors have a tolerances of
+20% to +30%, which will degrade the solution quality. Two
steps are adopted to reduce the impact of process variation.
Firstly, we can discover that the solution quality only depends
on the ratio of memristor resistances. In a similar way, dynamic
voltage (IR) drop will also have very limited influence on the

M1
My
Az
(b)

Fig. 5: Resistance tuning circuit: (a) analog subtractor and (b) analog adder.

solution quality. Thus, tolerance control technique [10] can
be used to restrict the tolerance between two memristors to
be lower than 1%. Secondly, post-fabrication resistance tuning
can further reduce the negative effects of process variation.

IV. MODULE EVALUATION

In this section we perform module evaluations of the
proposed MDA with respect to accuracy, throughput, and
energy efficiency. SPICE [26] and Matlab [15] are adopted for
simulating the performance of MDA.

A. Experimental Setup

We adopt three data sets (Beef, Symbols, and OSU Leaf)
from the UCR Time Series Classification Archive [18]. For
each data set, we formalize the sequences with different lengths.

We implement the proposed design in SPICE [26] with the
32nm technology node of TSMC [2], and the simulation setup
is presented in TABLE I. Note that the choice of technology
node will affect the design parameters but will not affect
the circuit topology or the general conclusions to be drawn.
It should be noted that we focus on the computation part
in the simulation, and weights are set to 1 to make a fair
comparison with existing works. It should be highlighted that
different weights have little influence on the performance.
For the sake of generality, the parameters of op-amps and
diodes are set to typical values according to recent literatures
[22]. Particularly, a parasitic capacitance of 20fF is added to
each circuit net to model the effect of parasitic capacitance
[22]. The parameter voltage resolution is to translate sequence
values to voltages. Considering the balance between simulation
time and comparison quality, the longest sequence length is
set to 40. Considering sequence length, we set the voltage
resolution to 20mV. The translation is as follows: the sequence
value 1 is translated to 20mV. Other values follow the same
principle, e.g., 1.2 and -0.5 are translated to 24mV and -10mV,
respectively. The stochastic Biolek’s model [4] [25] considering
nondeterministic digital dynamics for memristor simulation is
adopted, and the parameters are shown in TABLE II where V}
and 7 are the parameters of time and voltage units, respectively,
Vr, is an initial dynamic stochastic threshold, AV is the voltage
margin, R,r¢ and R,,, are the state parameters, and AR, Joff
is the standard deviation of the R, /sy that varies between
the switching cycles.

For algorithms such as EdD, LCS and HamD, a threshold
voltage (Vipre) and a unit voltage (Vi) are used. Considering
the longest sequence length is 40, we set Ve, to 10mV in case
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Fig. 6: Waveform of the output voltage of DTW (corresponding to the final
output) computation with sequence length of 20.
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Fig. 7: Convergence time and relative error of distance functions.

the output voltage overflows. Unlike Viep, Vinre is application-
specific, and it is configured to 10mV in the experiment.

The evaluation metrics are accuracy, throughput and energy
efficiency. For accuracy, the results from MDA and double-
precision calculation are compared. For throughput, the con-
vergence time in analog domain is used for evaluation, and
smaller convergence time means higher throughput. Energy
efficiency is defined as follows:

N N/t

- —Th/P,

Eefficiency = E = E/t (9)

where N is the total sequence number, ¢ is the runtime, F is
the total consuming energy, T'h is the throughput, and P is the
power. Thus, we discuss energy efficiency based on throughput
and power.

TABLE I: SPICE parameters for distance accelerator setup

Parameters Configuration
Open loop gain of op-amp 1x10%
Gain-bandwidth product of op-amp (GHz) 50
VeeV) 1.0
Voltage resolution 20mV
Threshold voltage of diodes (V) 0 [22]

TABLE II: Parameters for Stochastic Biolek’s model

[ Vo] T l
[ 0156V | 2.85x10%s

Vg, [ AV T Rogs | Ron | ARonjosy |
| 30v [ 02v | 100kQ | 1kQ | 5% |

B. Results and Analysis

We present performance evaluation for each module of
these algorithms. The convergence time indicating how fast

the module can operate and the relative error are discussed.
The convergence time is defined as the interval between the
rising edge of the input and the timestamp when the output
is within 0.1% of the final value. For each algorithm module,
we randomly choose a pair of data from the same class and a
pair from different classes in one dataset. The length of the
time series data are converted to different lengths. Totally 10
similarity computations are presented for each dataset. This
process is repeated for all the three datasets.

An example of the output waveform is shown in Fig. 6.
The output voltage increases gradually with the runtime, and
there exists some fluctuations when it comes to convergence
state. The rising speed varies because the capacity along the
propagation path for each PE varies. Note that there exists
zeros drifts in the calculation.

The convergence time and relative error of the six distance
functions is shown in Fig. 7. We can observe that the
convergence time for all distance functions are almost linear
to the sequence length except for HauD. This linearity is due
to the fact that the current propagation path of all the distance
functions expect HauD have a linear capacitance to the input
size. We can discover that the convergence time of HauD stays
almost constant when the sequence length is larger than 10.
This is because the convergence time is determined by the
output voltage and the amount of capacitance in the current
propagation path. For HauD, it should be noted that the result
of each sub-module is only used for the maximum calculation
in the sub-module right to it, whose calculation time is very
short and can be ignored compared to other calculation. Thus,
these sub-modules work almost in parallel, and the increase of
sequence length has almost no effect on the runtime. With the
fact that the output voltage of HauD will not increase when
the sequence length increase, the convergence time of HauD
stays constant basically.

Considering the relative error, it does not have a strong
correlation with sequence length and is purely characterized
by the property of the datasets. It can be noticed that the
relative error of DTW and EdD is larger than others’, which
is caused by the fact that larger zero drift exists for PEs of
DTW and EdD as shown in Fig. 6. This error introduced by
zero drift adds a bias to the final results, which will not affect
the accuracy of end-to-end applications.

In the module performance experiment, all the results are not
influenced by the nondeterminism of the stochastic Biolek’s
model. This is due to the following two reasons. Note that in
order for stochastic behavior of memrostors to be significant,
two conditions need to be satisfied: the voltage drop is larger
than the threshold voltage, and the voltage duration is longer
than the transition time [25]. Firstly, all memristors are under
a voltage far less than the threshold voltage of memristors.
For DTW, the input voltages in the absolution module are
very small, which are far lower than the threshold voltage of
3.0V. In the minimum module, the output voltage of diodes
cannot be below zero, which makes the input voltages have a
value less than or equal to V./2. Thus, the voltage drop of
all the memristors in the minimum module and the addition
module is less than or equal to V,./4 = 0.25V, which is also
far lower than the threshold voltage of 3.0V. Other distance
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Fig. 8: Performance comparison of our work and (a) existing works based on
FPGAs and GPUs and (b) CPU implementation.

functions have the same situations. Secondly, the computation
time is far less than the transition time of about lus for
memristors, and the running time for distance functions is about
several nanoseconds. Considering the above two conditions,
the possibility for stochastic resistance change is rather low
with several hundreds of experiments.

C. Comparison with Existing Works

We compare our method with existing works on both
GPU/FPGA and CPU platforms. The performance comparison
to compute 1 million distance calculations of our work and
existing works [35] [28] [8] [19] [39] [7] on GPU/FPGA is
shown in Fig. 8(a). The sequence length is set to 128. As all
existing hardware accelerations and our work have a linear time
complexity of the sequence length, the processing time of each
element in sequences is analysed for speedup discussion. For
HamD and MD, the optimization method early determination
is adopted, and the point with one-tenth convergence time is
set as Farly Point. For DTW comparison, the lower bound
module for task-level optimization in work [35] is regarded
as a DTW module to calculate the throughput, which is also
the ideal maximum throughput. We can notice that our work
has a speedup of 3.5x-376x for the six distance functions. The
runtime of LCS and HamD in our work is shorter than that of
others. This is because the convergence time in analog circuits
is influenced by output voltages which are smaller for LCS
and HamD.

As existing works have different configurations for different
applications, we also make an appropriate comparison of our
work and a CPU implementation with the same datasets. The
desktop computer is with Windows 8.1 operation system and
a quad-core CPU. The code is written in C language and
compiled by Microsoft Visual Studio 2015. The optimization
level is set to maximum speed O2. As shown in Fig. 8(b),
our work has a speedup of 20x-1000x compared to CPU with
different sequence lengths. The speedup gets larger with longer
sequences. It should be noted that the speedup for HamD and
MD are smaller than the other four distance functions. This is
because that the time complexity of the two distance functions
is O(n), while that of others are O(n?).

A rough power and area analysis is presented for energy
efficiency discussion. The power and area for a recently popular
op-amp with a gain-bandwidth product 303GHz is 197uW
and 0.16mm? [45], respectively under 0.35um technology
node, and the power and area for the 32nm technology node
are projected to 18 W and 1312um?, respectively with ideal
scaling for capacitance. The same procedure goes for a recent
8-bit 1.6 Gsample/s DAC [38] in 90nm technology node, and
the projected power and area for the adopted DAC are 32mW

8

and 0.02mm?, respectively. A recent 8.8GSample/s ADC in
32nm technology node with a low power of 35mW and an
area of 0.025mm? [20] is adopted. The number of PEs in each
column and row is set to 128, which is the same with [35].
For sequence length larger than 128, tiling technique can be
applied.

The power consumption of MDA depends on specific
distance functions. Note that leakage is also included in the
overall power calculation. For DTW configuration, the power
consumption of the distance accelerator includes three parts:
op-amps, ADCs/DACs, and memristors around op-amps. The
widely-applied Sakoe-Chiba band constraint R = 5% X n
is adopted. The power consumption of the active op-amps is
(TR(2n—R))x18uW = 0.20W, while the power consumption-
s of DACs and ADCs are [Throughput;,/1.6GSample/s| x
32mW = 0.13W and [T hroughput o, /8.8GSample/s] x 35
mW = 0.035W. Assuming at least one memristor is set to
HRS from the source to the ground, the power consumption of
memristors is (7TR(2n — R)) x 2 x 10uW = 0.22W. Thus, the
total energy consumption for DTW configuration is 0.58W.
Following the same principle, the total power consumptions of
the distance accelerator for LCS, EdD, Haud, HamD, and MD
are 2.97W, 6.36W, 2.64W, 2.95W, and 2.16W, respectively.
For the power consumption of the existing work, we use Xilinx
Power Estimators [16] to estimate the power according to
the used logical resources and clock frequency for FPGA
implementations. For GPU implementations, we adopt 80%
of the maximum power as the typical power. Thus, power
consumptions of exiting work for DTW, LCS, EdD, Haud,
HamD, and MD are 4.76W (FPGA) [35], 240W (GPU) [28],
175W (GPU) [8], 120W (GPU) [19], 150W (GPU) [39], and
137W (GPU) [7], respectively. Considering speedups, the
improvement of energy efficiency is one to three orders of
magnitudes (26.7x-8767x). Though more detailed implementa-
tion will weaken the speedup, the distance accelerator still has
a higher energy efficiency.

The area of MDA is dominated by op-amps, DACs, and
ADCs as there are only tens of memristors in each PE which
occupy much less area than op-amps. Thus, we estimate the area
of MDA with op-amps, DACs, and ADCs. The area of each PE
is 10 x 13124m?=0.013mm?, and the area of all PEs is 1282 x
0.013mm?=195.19mm?. The areas for DACs and ADCs are
[Throughput;, /1.6GSample/s] x 0.02mm? = 0.08mm?
and [Throughput . /8.8GSample/s] x 0.025mm? =
0.025mm?2, respectively. Thus, the estimated area of MDA is
195mm?, which is comparable with that of existing works [35]
[28] [8] [19] [39] [7] using FPGAs and GPUs (100-400mm?).

V. END-TO-END EVALUATION

The two widely-used applications, similarity search and
classification are employed in the end-to-end evaluation. Specif-
ically, the performance of MDA obtained via simulations with
SPICE [26] and Matlab [15] is compared with existing works
on GPUs and FPGAs.

Considering that the highest data precision analog circuit can
support is only 8 bits [31], and zero-drift error only adds bias to
the final results as discussed in Section IV, we mainly discuss
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the accuracy of MDA for similarity search and classification
applications in this section. As we focus on the performance
of MDA, the involved optimization in the task level is not
considered here. Therefore, the achieved speedup and energy
efficiency are the same with that in Section IV-C. Note that
speedup and energy efficiency are obtained with comparison
with existing works with task-level optimization.

A. Experiment Setup

According to work [35], there is simply no significant
difference made by reducing the dimensionality of all datasets
from their original lengths to exactly 128. Thus, we apply the
same operation to all datasets used in the experiments. We also

set the number of column and row of PEs in MDA to both 128.

For DTW, the DTW constraint of 5% is used. As the existing
implementations don’t support variable weighting factors, the
weighting factor, o;, is set to 1. Matlab is used to simulate
accuracy with different data precisions. Considering data
precision, data length of 8 bits is adopted for MDA, which is
the highest data precision analog circuit can support [31]. Note
that as discussed in Section I'V-B, analog calculation produces
no error about the relations of the distance values between
sequences. Thus, in the experiment we focus on the accuracy
loss introduced by low data precision in analog domain. For
DTW with FPGA implementations, data length of 8 bits is
used. For other distance functions with GPU implementations,
double float precision is used.

It should be emphasised that there exists a big difference
between the data precision of 8 bits in analog domain and in
FPGA implementations. In FPGA implementations of DTW
in [35], only inputs are with 8 bits data precision, while data
precision of intermediate variables and outputs are according to

computation requirement which can be much larger than 8 bits.

However, in the analog domain, data precision of 8 bits means
inputs, intermediate variables and outputs are all constrained to
only 8 bits. Thus, the data precision of FPGA implementations
is still much higher than that of analog computation. By
analysing the computation pattern of distance functions (except
Haud), we can discover that the output is the sum of n values (n
is the sequence length and is 128 in the experiment). In FPGA
implementations, the sum of 128 8-bits numbers requires a data
precision of 15 bits. However, in the analog domain, the data
precision of the sum is limited by 8 bits, which will introduce
serious overflow problem. Tradeoff exists for bits allocation
for overflow and input data precision. More bits for overflow
means that the input data precision is too low to obtain an
acceptable accuracy, while more bits for input data precision
will lead to serious overflow problem. In order to tackle the
overflow problem, in fact we only need to keep the final result
of distance functions (usually with the lowest distance value)
in the range, and the overflowed values have no influences
on the final results. This will largely reduce the required
bits for overflow. Particularly overflow conditions are specific
to distance functions and applications, which determines the
corresponding bits design. In the experiment, with some test
experiments our configuration is as follows: (a) most of the
input data precision for DTW and MD is 6 bits, and is 5

bits for only some datasets because 6 bits will cause serious
overflow problem; (b) the input data precision for HauD is 8
bits as only maximum and minimum computation is involved;
(¢) for LCS, EdD and HamD, a threshold and a step are
used, the step is set to constant 1 as the maximum distance
for these algorithms is 128 x step, unlike step, threshold is
application specific; (d) the input data precision for LCS, EdD
and HamD is 8 bits as the maximum distance is determined by
step, which is set to constant 1 to eliminate overflow problem;

B. Similarity Search

20 datasets from UCR Time Series Classification Archive
[18] are adopted. All the sequences except randomly selected
one in each dataset is jointed together as the test sequence,
and the selected one sequence is used as the query sequence.
Similarity search is to find the subsequence from the test
sequence, which has the minimum distance with the query
sequence.

Table IIT shows the results of the similarity search task.
For all the dataset, MDA can find the same subsequence with
existing works with a percent of 70%, 80%, 90%, 70%, 95%,
and 70% in distance function DTW, LCS, EdD, HauD, HamD,
and MD, respectively. The average percent is 79%, which is
still high considering the low data precision. Note that two
subsequences in which the index of the first elements are near
to each other are regarded as the same subsequence, e.g., for
dataset Inlinestake with DTW computation, the subsequence
with the first element of 11006th and another one with the first
element of 11007th are assumed as the same subsequence.

It can be noted that though MDA and existing works can find
the same subsequence, the relative difference maybe high, e.g.,
for dataset ECGFiveDays with EdD computation, the relative
difference is 100%. However, the relative difference maybe
low even MDA and existing works find different subsequences,
e.g., for dataset 50words with LCS computation, the relative
difference is only 1% though the obtained subsequences are
different. Further more, in some conditions though the relative
difference is large, the real difference is low. For example,
for dataset StarLightCurves with EdD calculation, the relative
difference is 100%. However, the distance value is 0 for GPU
and is 2 for MDA, which means 128 elements are matched
for GPU and 126 elements are matched for MDA. In fact,
there are only 2 mismatched elements for the 128 elements in
the query, which is with a low error. Thus, low data precision
introduces some variances to the outputs and the resulting error
is relatively low.

We can discover that for specific datasets, MDA finds
different similar subsequences for the adopted six distance
functions. This is caused by the fact that different distance
functions have their own characteristics, and choosing the
distance functions is determined by applications.

C. Classification with k-Nearest Neighbors

40 datasets from UCR Time Series Classification Archive-
with [18] with different sequence lengths are selected for
classification application. k nearest neighbor with k=1 is used
for classification.
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TABLE III: Results of similarity search with 20 datasets

Dataset Sequence DTW ' LCS ' EdD . HauD ) HamD ' MD '

length Accuracy*  Diff. Accuracy Diff. Accuracy  Diff.  Accuracy  Diff.  Accuracy Diff. Accuracy Diff.
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FeAll IS0 gy % gy 1% opgn 0% S TR g 0% i 10%
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Hapies 1980 2% igsn 0% degn % oo 2% s D% sm
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CielY 4920 g 1% Jogn 0% How % Gow 1% Jowm 0% g 4%
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Frbws M Dmon 4% s % men %% pion % imen 0% isen %
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L I T
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* Accuracy means the index of the first element of the most similar subsequence in the similarity search application. In column ’Accuracy’, the
upper and lower index is for MDA and existing works, respectively. Diff. means relative difference between the distances of existing works and MDA.

Fig.9 shows the accuracy varies with 40 datasets. It can
be noticed that existing works and MDA have almost the
same accuracy in most cases. Compared with existing works,
the average accuracy losses for are DTW, LCS, EdD, HauD,
HamD, and MD are 1.4%, -0.2%, 0.23%, 0.12%, -0.03%,
0.17%, respectively, and the overall average accuracy loss
is 0.14%. It can be concluded that MDA introduces almost
no accuracy loss. We can also find that though most of the
distance function introduce errors, LCS obtains a relatively
high accuracy improvements (0.2%). This is highly caused by
the fact that for LCS low data precision removes noises in the
input data and therefore obtains high accuracy.

However, there still exists some cases that the accuracy loss

is relatively large, e.g., for dataset 1 with DTW calculation,
the accuracy loss is 10%. This is because dataset 1 is more
sensitive on the input data precision for DTW. In practical uses,
this problem can be solved by changing the adopted distance
function for dataset 1. For example, MDA using HamD gets a
much higher accuracy (86%) than GPU using HamD (86%),
FPGAs using DTW (60%) and MDA using DTW (50%) for
dataset 1.

We can also notice that for specific dataset, the accuracy of
distance functions vary. For example, the accuracy of dataset
24 using LCS and EdD is lower than 20%. However, MD
can achieve a high accuracy of 100%. This is due to the fact
that choosing distance functions is specific to applications.
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Fig. 9: Classification accuracy using kNN and (a) DTW, (b) LCS, (c) EdD, (d) HauD, (¢) HamD, and (f) MD with 40 datasets. The correspondence of
dataset and the x axis is as follows: (1, Beef), (2, CBF), (3, ChlorineConcentration), (4, CinC_ECG_torso), (5, Coffee), (6, Cricket_X), (7, Cricket_Y),
(8, Cricket_Z), (9, DiatomSizeReduction), (10, ECGFiveDays), (11, FaceAll), (12, FaceFour), (13, FacesUCR), (14, fish), (15, Gun_Point), (16, Haptics),
(17, InlineSkate), (18, ItalyPowerDemand), (19, Lighting2), (20, Lighting7), (21, MALLAT), (22, Medicallmages), (23, MoteStrain), (24, OliveOil), (25,
OSULeaf), (26, SonyAIBORobot Surface), (27, SonyAIBORobot Surfacell), (28, StarLightCurves), (29, SwedishLeaf), (30, Symbols), (31, synthetic_control),
(32, Trace), (33, Two_Patterns), (34, TwoLeadECG), (35, uWaveGestureLibrary_X), (36, uWaveGestureLibrary_Y), (37, uWaveGestureLibrary_Z), (38, wafer),
(39, WordsSynonyms), (40, yoga), where X is the x axis and A is the name of dataset in the format (X, A).

Considering such specification, we can select suitable distance
functions for application for comparison, and the accuracy loss
will be even lower.

VI. CONCLUSIONS

In this paper, we propose MDA, a reconfigurable high-
throughput and high-energy-efficient memristor-based distance
accelerator for time series data mining in data centers. We
adopt memristors to design analog circuits for six widely-
used distance functions including dynamic time warping,
longest common subsequence, Hausdoff distance, edit distance,
Hamming distance, and Manhattan distance. The basis primitive
of the circuits is extracted, which can be configured to
any specific distance functions. Comprehensive experiments
are presented with public available datasets. Compared with
existing works, the performance of the proposed accelerator
has a speedup of 3.5x-376x with limited accuracy loss. Energy
analysis shows that the accelerator has an improvement of 1-3
orders of magnitude on energy efficiency. Though the the data
precision for MDA is low, there is little accuracy loss is for
similarity and classification applications.

The future works will evaluate the effeteness and efficiency
of the proposed MDA considering more detailed fabrication
issues (e.g., defects) and runtime issues (e.g., memory reliability,
wait time) with a computer-system architecture simulator (e.g.,
GemS5 [1]). The detailed design of I/Os of the proposed MDA
for long sequences also needs to be investigated and analysed
in the future. Furthermore, we will improve the PE design to
support more functions.
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