
Volume 1, Issue 1, February 1, 2018

TC-CCPS Newsletter

m ieee-cps.org Page 1

ar
X

iv
:1

90
3.

02
04

8v
1

 [
cs

.L
G

]
 5

 M
ar

 2
01

9

http://www.ieee-cps.org/

Technical Articles

On the Quantization of Cellular Neural Networks for Cyber-Physical Systems

Xiaowei Xu, University of Notre Dame

1 Introduction and Motivation

Cyber-Physical Systems (CPSs) have been pervasive including smart grid, autonomous automobile systems, medical
monitoring, process control systems, robotics systems, and automatic pilot avionics [1][39][36][5][6]. As usually
implemented on embedded devices, CPS is typically constrained by computation capacity and energy consumption.
In some CPS applications such as telemedicine [26][34] and advanced driving assistance system (ADAS) [40], data
processing on the embedded devices is preferred due to security/safety and real-time requirement[4]. Therefore, high
efficiency is highly desirable for such CPS applications.

A very powerful tool for telemedicine and ADAS is cellular neural network (CeNN), which can achieve very
high accuracy through proper training. It should be noted that CeNNs are popular in image processing areas such
as classification [10], segmentation [11], while convolutional Neural Networks (CNNs) are most powerful in clas-
sification related tasks. However, due to the complex nature of segmentation and other image process tasks and
the associated real-time requirements in many applications, hardware implementations of CeNNs have remained an
active research topic in the literature.

The structure of CeNNs makes them a natural fit for analog implementations. Many studies exist along this
direction [13][27][20][2]. The advantages of analog implementations include high performance with an extremely
fast convergence rate and the convenience of integrating them into image sensors for direct processing of captured
data. However, these analog implementations suffer from Input/Output (I/O) and data precision problems. First, they
require that each input corresponds to a unique neuron cell, resulting in too many I/O ports. For example, recent
implementation [2] can only support 256×256 pixels at its most, which is far from the requirement of mainstream
images, e,g., 1920×1080 pixels. Second, analog circuits are prone to noise, which limit the output data precision to
7 bits or below [33]. As a result, analog implementation cannot even process regular 8-bit gray images.

In view of the above issues, digital implementations of CeNNs have been proposed, where data is quantized with
approximation. Tens to hundreds of iterations are needed in the discretized process and as a result, the computational
complexity of digital CeNNs is very high. For example, to process an image of 1920x1080 pixels requires 4-8 Giga
operations (for 3×3 templates and 50-100 iterations), which needs to be done in a timely manner for real-time
processing.

To tackle the computation challenge, CeNN accelerations on digital platforms such as ASICs [16][19], GPUs
[24] and FPGAs [7][23] [21][33][37][35][22] have been explored, with FPGA among the most popular choices due
to its high flexibility and low time-to-market. The work [7] presented a baseline design with several applications,
while the study [23] took advantage of reconfigurable computing for CeNNs. Recently, the CeNN implementation
for binary images was demonstrated [22]. Expandable and pipelined implementations were achieved on multiple FP-
GAs [21]. Taking advantage of the structure in [21], the work [33] implemented a high throughput real-time video
streaming system, which is further improved to be a complete system for video processing [37]. All the three works
share the same architecture for CeNN computation. Due to the large number of multiplications needed in CeNNs, the
limited number of embedded multipliers in an FPGA become the bottleneck for further improvement. For example,
in work [21] 95%-100% of the embedded multipliers are used. On the other hand, it is interesting to note that the
utilization rates of LEs and registers are only 5% and 2%, respectively, which is natural to expect as not many logic
operations are needed. However, in a mainstream FPGA, LEs and registers count for significantly larger portion of

m ieee-cps.org Page 2

http://www.ieee-cps.org/

the total programmable resources than embedded multipliers. For example, LEs and registers occupy 95.4% of the
core area while embedded multipliers only 4.6% for a EP3LS340 FPGA [31]. Such an unbalanced resource utiliza-
tion apparently cannot attain the best possible speed of the CeNN being implemented, and an improved strategy is
strongly desired.

A naive approach for potential improvement is to use LEs and registers to implement additional multipliers.
This technique, although straightforward, is very inefficient due to the high cost. For example, it takes 676 LEs
and 486 shift registers to implement an 18-bit multiplier. For an XC4LX25 FPGA, all the LEs and registers can
only contribute 42% additional multipliers. Apparently, such an approach would not lead to significant improvement
and we aim to address the problem through an alternative approach, i.e., by completely eliminating the need of
multipliers. From basic Boolean algebra, we know that the multiplication of any number with powers of two can
simply be done with logic shift, which only requires a small number of LEs and registers to achieve. Inspired by
this, we can quantize the values in CeNN templates to powers of two, so that we can make full use of the abundant
LEs and registers in FPGAs. An extra benefit from this approach is that LEs and registers are much more flexible
for placement and routing, leading to higher clock frequencies. While this can lead to significantly higher resource
utilization rate and reduced computational complexity, many interesting questions still remain. For example, how
would such quantizations affect the final CeNN accuracy? What is the impact of different quantization strategies?
Note that quantization to powers of two has been explored in the context of CNNs [38], but as detailed in Section 2.3,
the difference in computation structures between CeNNs and CNNs warrants a separate investigation for CeNNs.
And indeed, our findings show that the answers to these questions are different for the two.

In this paper we present CeNN quantization for high-efficient processing for CPS applications, particularly
telemedicine and ADAS applications. We systematically put forward powers-of-two based incremental quantiza-
tion of CeNNs for efficient hardware implementation. The incremental quantization contains iterative procedures
including parameter partition, parameter quantization, and re-training. We propose five different strategies includ-
ing random strategy, pruning inspired strategy, weighted pruning inspired strategy, nearest neighbor strategy, and
weighted nearest neighbor strategy. Experimental results show that our approach can achieve a speedup up to 7.8x
with no performance loss compared with the state-of-the-art FPGA solutions for CeNNs.

The remainder of the paper is organized as follows. Section 2 introduces backgrounds and motivation of the
paper. The proposed framework for CeNN and the optimized hardware implementation are presented in Section 3.
Experiments and discussion are provided in Section 4 and concluding remarks are given in Section 5.

2 Preliminaries

2.1 Cellular Neural Networks

Different from the prevalent CNNs which are superior for classification tasks, the CeNN model is inspired by the
functionality of visual neurons. In a CeNN, a mass of neuron cells are connected with neighbouring ones, and only
adjacent cells can interact directly with each other. This is a significant advantage for hardware implementation,
resulting in much less routing complexity and area overhead. CeNNs are superior at image processing tasks that
involve sensory functions, such as noise cancellation, edge detection, path planning, segmentation, etc. For the
widely used 2D CeNN with space-invariant templates, the dynamics of each cell state with an M×N rectangular cell
array [8] are as follows:

ẋi, j(t) =−xi, j(t)+
N

∑
k,l=−N

(Ak,l(t)yi+k, j+l(t)+

Bk,l(t)ui+k, j+l(t))+ I(t),

(1)

yi, j(t) = f (xi, j(t)) = 0.5× (|xi, j(t)+1|− |xi, j(t)−1|), (2)

m ieee-cps.org Page 3

http://www.ieee-cps.org/

b b b
b b b

b b

1

1 1

1

2

0b0

0 0 How to sort during incremental quantization?

b0 >b1(4x) (4x)

b2(1x) b1(4x)>Or
>b2(1x)

b0(4x)>
Or ...

Figure 1: CeNN template for binary image noise cancellation application.

where 1 ≤ i ≤ M, 1 ≤ j ≤ N, Ak,l(t) is the feedback coefficient template, Bk,l(t) is the feedforward coefficient
template, I(t) is the bias, and xi, j(t), yi+k, j+l(t) and ui+k, j+l(t) are the state, output and input of the cell, respectively.
Note that Ak,l(t), Bk,l(t) and I(t) are time-variant templates, and t can be removed when time-invariant templates are
used. For efficient implementation on a digital platform (e.g., CPU, GPU, FPGA), discrete approximation of CeNN
is obtained by applying forward Euler approximation as shown in Equations 3, 4 and 5.

xi, j(t)∼= (xi, j(n+1)− xi, j(n))/∆t. (3)

xi, j(n+1) = xi, j(n)+∆t(−xi, j(n)+ I(n)+
N

∑
k,l=−N

(

Ak,l(n)yi+k, j+l(n)+Bk,l(n)ui+k, j+l(n))).

(4)

yi, j(n) = f (xi, j(n)) = 0.5× (|xi, j(n)+1|− |xi, j(n)−1|). (5)

Delayed CeNN is a special type of CeNN described by adding ∑
N
k,l=−N(Di, j(n)g(xk,l(n),yk,l(n),uk,l(n)) to Equa-

tion 4, where g is usually a piece-wise constant function. Please refer to [8] for details. For the mainstream image
size with 1920×1080 pixels, the total complexity is 1920×1080×39×100=8.1×109 operations with 100 iterations
(19 multiplications and 20 additions in each iteration). This warrants exploration of hardware approaches to speedup
CeNN computations.

2.2 Template Learning Algorithm and PSO Algorithm

Template learning is a widely applied method to find satisfactory templates for CeNN-based applications, in which
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are two representatives. PSO is adopted in this
paper, while GA and other template learning methods are also compatible with the framework proposed here.

PSO finds solutions (i.e., determining A, B and I templates) in a heuristic way by searching the solution space
with multiple particles (swarm of potential solutions). In each iteration, PSO performs position update and object
function calculation. Inspired by the social behavior of animals, the position update of each particle is affected by
its past best position and the position of the current global best position as depicted by Equation 6,

pi,d(n+1) = pi,d(n)+{w× vi,d(n)+ c1r1

×(pbi,d− pi,d(n))+ c2r2× (gbd− pi,d(n))}.
(6)

where 1 ≤ i ≤ N, 1 ≤ d ≤ D, N is the size of particles, D is the dimension of each particle, c1 and c2 are the
acceleration coefficients, and r1 and r2 are random numbers with uniform distribution. pi(n+ 1) and pi(n) are the
positions of the ith particle in iteration n and n+ 1, respectively. pbn is the best position that the ith particle ever
searches, and gb is the current best position among all particles. Inertia weight w controls the balance of the search
algorithm between exploration and exploitation. A bound of [mind , maxd] is introduced for pi,d to limit the solution
space. The object function for particles taking positions as input is designed according to applications. In CeNN
training, PSO will search the space constructed with A, B and I templates, and the templates with the best object
function value are obtained as the learned templates.

m ieee-cps.org Page 4

http://www.ieee-cps.org/

All parameters

are quantized?

No

Yes

Initial parameters

Incremental re-training

 (fix quantified parameters during training)

Parameter quantization for

the selected parameters

Parameter partition to select

 a subset of parameters

Done

Figure 2: The flowchart of incremental quantization.

-0.56

-7.67

-0.38 1.74 1.93

2.56 0.27 3.71

-0.98 -7.67 -0.86

0.23 1.40 2

-0.41 2 2

-2 1.04

-2

1

2

0

2 -1.57 2

2.79 2 2

-2 -2 2

-2

1

2

0 3

-2

0

2 -2 2

2.79 2 2

-2 -2 2

-2

1

2

0 3

-2

0

1 2 -2 2

2 2 2

-2 -2 2

-2

1

2

0 3

-2

0

1

2

Pruning

0.58 0.11 2.14

2.45 -3.87 3.98

-1.10 2.57 -0.33

-0.01 0.97 2

3.49 -2 2

-2 -0.54 1.99

1

2 2

0

0 2 2

2 -2 2

-2 2

1

2 2

0

0

2

1

0 2 2

2 -2 2

-2 -2 2

1

2 2

0

0

2

-1 1

0 2 2

2 -2 2

-2 -2 2

1

2 2

0

0

2

-1 1

A

B

3.58 3.78

Figure 3: An example of the proposed quantization framework. In each iteration, parameter partition, parameter
quantization and incremental re-training are performed sequentially. Green cells represent quantized parameters.

2.3 Motivation

While hardware oriented memory/computation compression and optimization of CNNs have been extensively stud-
ied recently [9][14] [32][25][29][38], little has been explored for CeNNs where memory consumption is not a prob-
lem and the focus is only on computational complexity.

The main difference between CeNNs and CNNs is that in CeNNs the parameters are coupled. The weight values
in a CNN tend to be all unique. However, in CeNNs some parameters share the same values. For example, in
Figure 1, a CeNN template (template B) for binary image noise cancellation [17] is shown. Only three different
values exist for the nine parameters. As such, in [38] the weights of CNNs are incrementally quantized in an order
simply based on their magnitudes (pruning-inspired strategy). The same strategy may not work well for CeNNs, as a
parameter with small magnitude may repeat multiple times thus playing a more important role than a parameter with
a large magnitude but appearing only once. Furthermore, the training process of CNNs is mathematically optimal,
while that of CeNNs is heuristic. This will also influence the performance of quantization strategies. Finally, the
sparsity and repetition existing in CeNN templates provide some additional opportunity for further improvement
when implemented in hardware.

3 CeNN Quantization and Hardware Implementation

In this section, we present the CeNN quantization framework followed by the details of the hardware implementation.

3.1 Incremental Quantization

The proposed incremental quantization framework is an iterative process as shown in Figure 2. Each iteration com-
pletes three tasks: parameter partition, parameter quantization, and incremental re-training. We assume that as a
starting point, we have all parameters in the original templates before quantization well trained. An illustrative ex-
ample of the process is shown in Figure 3 to facilitate understanding.

3.1.1 Parameter Partition

This task selects a subset of parameters not yet quantized (un-quantized parameters) to perform quantization. Two
knobs exist in this task: parameter priority and batch size.

For the first knob, the pruning-inspired (PI) strategy has been well explored in quantization of CNNs [38], based
on the consideration that weights with larger magnitudes contribute more to the result and thus should be quantized

m ieee-cps.org Page 5

http://www.ieee-cps.org/

first. However, the parameters in CeNNs have some unique characteristics which have been discussed in Section 2.3.
In order to tackle the problem, we propose a nearest neighbor (NN) strategy and a weighting method for the first
knob. The combined weighted nearest neighbor algorithm takes the number that a parameter appears in the template,
defined as its repetition quantity (rq) as the reciprocal of the weight, and uses the difference between the parameter
and its nearest power-of-two as distance to perform a weighted NN algorithm (WNN). The detail explanation of
WNN algorithm is shown in Algorithm 1. Other combinations such as weighted pruning-inspired (WPI) strategy
adopt the same weighting method but with PI to form WPI. A total of five strategies PI, WPI, NN (WNN with all
weights set to 1), WNN and a random strategy (RAN) are compared in the experimental section.

For the second knob, batch size is the number of parameters selected in each iteration, which will affect re-
training speed and quality. We propose to use two batch sizes, constant and log-scale. The former selects the same
number of parameters in each iteration, while the latter picks a fixed percentage from the remaining un-quantized
parameters, rounded to the nearest integer. Compared with constant batch size, log-scale batch size quantizes more
parameters in the first several iterations and fewer towards the end.

Algorithm 1 Weighted nearest neighbor strategy

Input: un-quantized parameters uqi, repeat quantity, rqi, selected quantity, N, 1 ≤ i ≤ n, n, the number of un-
quantized parameters
Output: the most important N parameters
neighbor = log2 |(uq)|; // get the power of the absolute value of the un-quantized parameters
for i = 1 to n do

md = (2 f loor(neighbor(i))+2 f loor(neighbor(i)+1))/2;
if md > |(uq(i))| then

nnDist(i) = |(uq(i))|−2 f loor(neighbor(i));
else

nnDist(i) = 2 f loor(neighbor(i))+1−|(uq(i))|;
end if

end for
wnnDist = nnDist/rq;
sort wnnDist in ascending order;
output the first N parameters;

3.1.2 Parameter Quantization

Before parameter quantization, the bit width should be defined first according to applications. Note that there are
millions of parameters for CNN, and short bit width is always appreciated considering memory and computational
consumption. However, CeNN usually has tens to hundreds of parameters (time-variant templates have more param-
eters than time-invariant templates), and bit width has no significant impact on memory consumption. In addition,
with power-of-two conversion multiplications can be done with logic shifts, and bit width will also have little impact
on computation complexity. The only impact it will have is on the resource utilization of multipliers.

Suppose the quantization set is designed as depicted in Equation 7, where k and m indicate the range of quan-
tization. The corresponding bit width bw is calculated as shown in Equation 8, where the extra one bit is the sign
bit.

qs = {±(2k, .,2p, .,2m),0}, k ≤ p≤ m, p,k,m ∈ Z. (7)

bw =Ceiling[log2(2× (m− k+1)+1)]+1. (8)

With the quantization set, a parameter uq(i) is quantized as shown in Equation 9. When the absolute value of a
parameter is smaller than 2−k−1, it will become zero after quantization and get pruned. Lower bit width can prune
more parameters, at the cost of accuracy loss.

m ieee-cps.org Page 6

http://www.ieee-cps.org/

2D Conv

Unit

2D Conv

Unit

+

bias
f(x)

U i+k,j+l

Bk,l

A

Δt

S2 +

 x (n)i,j

 x (n+1)i,j

y (n)i+k,j+l

i+k,j+l

y (n)i+k,j+l

y (n+1)i+k,j+l

 x (n+1)i,j

U i+k,j+l

Reg Bank
y (n)i+k,j+l

S1

+

+

Data

Scheduler Coefficient counter

Ak,l
y (n)i+k,j+l∑

Coefficients

TimeVariant

adder

M
U

X
M

U
XModules in this area

can be eliminated for

some configurations

S Shifter

+ Adder

k,l

U

FIFO

(n)(n)

(n)

(n)

Figure 4: Architecture of the optimized stage design.

uq(i) =

2p if 3×2p−2 ≤ |uq(i)|< 3×2p−1;

k ≤ p≤ m;
2m if |uq(i)| ≥ 2m;
0 if |uq(i)|< 2−k−1.

(9)

3.1.3 Incremental Re-training Algorithm

Usually, re-training algorithm is an optimal problem as shown in Equation 10, where P is the set of all the parameters.
In incremental re-training algorithm, the optimal problem is revised as shown in Equation 11, where U and Q are
the sets of un-quantized and quantized parameters, respectively. ai and bi are the lower and upper bounds for both
Pi and Ui, respectively. Note that P = Q∪U , and U ∩Q = /0. In each iteration, a subset of U will be quantized and
added to Q.

f = min ob j(P), s.t. Pi ∈ [ai,bi],0≤ i≤ |P|. (10)

f = min ob j(U,Q),s.t.Ui ∈ [ai,bi],0≤ i≤ |U |. (11)

Q will be fixed during the re-training process and only U is used for space searching. After multiple iterations, all
the required parameters are quantized. It should be noted that the bias I(n) in Equation 4 for CeNN is not required to
be quantized as it is not involved in multiplication. Therefore, another re-training iteration is required for the optimal
bias when all the required parameters are quantized.

3.2 Efficient Hardware Implementations

We base our work on the state-of-the-art FPGA CeNN implementations [21][33][37], which is expandable, highly
parallel and pipelined. The basic element of the architecture is the stage module which handles all the processes in
one iteration corresponding to Equation 4 for 1≤ i≤M, 1≤ j ≤ N. Multiple stages are connected sequentially for
multiple iterations to form a layer, which processes the input in a pipelined manner. Furthermore, multiple layers can
be connected sequentially for more complex processing or be distributed in parallel for a higher throughput. Note
that First In First Out (FIFO) are used between adjacent stages to store the temporary results of each stage (or each
iteration), and they are configured as single-input multiple-output memories. Please refer to FPGA implementations
in [21][33] for more details.

Our efficient hardware implementation focuses on the optimization of the stage design as shown in Figure 4. Two
optimizations are performed: multiplication simplification and data movement optimization. First, with incremental

m ieee-cps.org Page 7

http://www.ieee-cps.org/

Table 1: Comparison of resource utilization between 18-bit multipliers implemented using shifter modules of various
configurations S1(m) and S2(m) (with different m as defined in Equation 7, k=-m for S1, and k=0 for S2) and a direct
implementation of an 18-bit multiplier using LEs and registers.

MODULE S1(0) S1(1) S1(2) S1(3) S1(4) S1(5) S2(7) Multiplier

LES 39 44 50 80 109 105 80 676
REGISTERS 39 42 45 47 50 52 75 486

Total number of non-zero value

T
e

m
p

la
te

 Q
u

a
n

ti
ty

0 1 2 3 4 5 6 7 8 9
0

20

40

60

(a)

Number of repetitions in a template

T
e

m
p

la
te

 Q
u

a
n

ti
ty

0 1 2 3 4 5 6 7 8 9
0

50

100

(b)

Figure 5: Illustration of (a) sparsity and (b) repetition characteristic with 174 CeNN templates.

quantization, simplification can be achieved by replacing multiplications with shift operations. The detailed hard-
ware implementation will be discussed in Section 3.2.1. Second, when FPGA resource is extremely limited (e.g. for
low-end FPGAs), data movement optimization can be performed utilizing the sparsity and repetition in CeNN tem-
plates. As will be discussed later in Section 3.2.2, in many applications CeNN templates naturally involves zero or
repeated parameters. With incremental quantization, more zeros are yielded leading to higher sparsity and the small
quantization set introduces a larger number of repetitions. Data movement optimization can minimize the number of
computations needed. The details will be discussed in Section 3.2.2.

The optimized stage can be configured for both time-invariant templates and time-variant templates. Note that
the FPGA implementation [33] is dedicated to CeNN with time-invariant templates, while [21] is for time-variant.
The TimeVariant part in Figure 4 is specific for time-variant templates, and can be eliminated in the configuration
for time-invariant ones.

3.2.1 Shifter Module

In Figure 4, shifter S1 is for multiplications in CeNNs and S2 is for discrete approximation involved with ∆t in
Equation 4. Usually ∆t is very small, and the hardware implementation of S2 in this paper is designed to support
∆t=2s, where −7 ≤ s ≤ 0, s ∈ Z. Note that when ∆t is configured to 20 or 1, the computation is transformed to
discrete CeNN [12].

Table 1 provides an illustrative comparison of resource utilization between multipliers implemented using shifter
modules of various configurations and a direct implementation of multiplier using LEs and registers. It can be
noticed that the shifter module consumes much fewer resources than the general implementation, such that more
multiplications can be placed on FPGAs for higher performance and speed. It should be pointed out that multiple
shifters can be adopted in the 2D convolutional module.

3.2.2 Data Scheduler Module

Data scheduler module exploits the sparsity and repetition of parameters in CeNN templates. We analyzed 87 tasks
from 79 applications [15], and totally 174 templates are examined (each task has two templates: template A and
template B). All the templates are 2D 3×3 each having nine parameters. The corresponding sparsity and repetition
are shown in Figure 5(a). We can discover that a majority of templates have zero values, and more than half have only

S

+
Coefficients

M
U

X
M

U
X

0 a 0
a a a
0 a a

1

1 1

1

2

b b b
b b b
b b b
4 65

1 32

7 98 3 A

a a a2 3 1b4 b2

b8 b9 b5

b6

Cycle

1

Cycle

2

Cycle

3

Cycle

4
Cycle

1

Cycle

2

Cycle

3, 4A

Figure 6: Illustration of sparsity-induced and repetition-induced optimizations.

m ieee-cps.org Page 8

http://www.ieee-cps.org/

Table 2: Configuration of PSO algorithm.

N c1 c2 w iteration mind maxd
10 1.4 1.2 0.8 500 −2m 2m

three or less non-zero parameters. Therefore, ignoring multiplications with zeros will give a significant improvement
in efficiency.

Figure 5(b) depicts the histogram of the parameter repetition in all the 174 templates. We can see that in most
of the templates, about 5-6 parameters are repeated values. With repeated parameters, we can also take advantage of
the associative law for repetition-induced optimization, e.g., a1×b1 +a1×b2 +a1×b3 = (b1 +b2 +b3)×a1, and
hence three multiplications are optimized to only one.

Note that these optimizations seem to be straightforward and automatic in software synthesis, but for hardware
implementations detailed attention is needed. An illustration of optimization with sparsity and repetition is shown
in Figure 6. With sparsity-induced optimization, we only take the non-zero parameters into consideration, and three
multiplications can be eliminated. An adder (only consumes 10 LEs in the design) is utilized to calculate the sum
A of b2, b4 and b6 in parallel with the shifter module. The shifter module calculates b5×a2, b9×a3, and b8×a1 in
the first three cycles, and computes A× a1 in the forth. Thus, totally it takes four cycles rather than nine cycles to
calculate Equation 8. Specifically, sparsity-induced optimization reduces the computation time from nine cycles to
six, and repetition-induced optimization reduces it from six to four.

The power of sparsity-induced and repetition-induced optimizations varies with different applications. Note that
if the number of shifters adopted in the 2D convolution module is larger than one, repetition-induced optimization
can be eliminated as it contributes much less compared with the shifters. If the number of shifters equals that of the
coefficients which is also the situation to achieve the highest throughput, repetition-induced optimization can also
be eliminated as all multiplications can be processed in only one cycle. Therefore, the two optimizations are only for
situations with very limited resources.

4 Experiments

In this section, we first evaluate the performance of various incremental quantization strategies discussed in Section
3 with two CPS applications: medical image segmentation for telemedicine and obstacle detection for ADAS. Then
we implement the quantized CeNNs on FPGAs and compare their speed with state-of-the-art works.

4.1 Performance Evaluation

4.1.1 Experimental Setup

For incremental quantization, a total of 10 incremental quantization strategies are evaluated: five partition strategies
(RAN, PI, WPI, NN (WNN with all weights set to 1), and WNN) in combination with two batch sizes (constant
and log-scale). For compact presentation, we use postfix -C and -L to denote constant and log-scale batch sizes,
respectively. For constant batch size, we set the size to 20% of the total parameters. While for log-scale batch size,
we set it to half of the remaining un-quantized parameters. We discuss five quantization set sizes with m =0, 1, 2, 3,
4 and k = −m (see Equation 7).

The parameters of PSO algorithm in Equation 6 is shown in Table 2. The object function designed according to
applications will be discussed in the following sections.

4.1.2 Medical Image Segmentation for Telemedicine

The objective function for medical image segmentation in PSO re-training is shown in Equation 12, where out put
and IdealOut put are output images of CeNN processing on input images and desired output images, respectively,
and t is the number of training pairs, and area is the product of the width and height of the image. We also adopts
the objective function as accuracy to evaluate the quality of segmented images. The pattern structures of the 3×3

m ieee-cps.org Page 9

http://www.ieee-cps.org/

Ideal output of AImage A Ideal output of BImage B

Figure 7: Two selected images and their manually segmented images taken from MIAS database to train CeNN.

C L C L C L C L C L
RAN PI WPI NN WNN

(a) m=2, k=-2

m

(b) NN-L, k=-m

Figure 8: Performance comparison between templates with various (a) strategies and (b) quantization sizes m for
biomedical image segmentation.

templates A and B are as follows: A = {a0,a1,a2;a3,a4,a3; a2,a1,a0}, and B = {a5,a6,a7;a8,a9,a8;a7,a6,a5}. The
dataset is from the mammographic image analysis society (MIAS) digital mammogram database [30], and two
images and its corresponding segmented results are selected as training images as shown in Figure 7, which is the
of the same configuration with the work [28]. Totally 119 test images are used in the experiment. Note that as there
is no ideal output in the MIAS database, the outputs of the template with double precision are regarded as the ideal
outputs.

ob j = accuracy =
t

∑
i=1

abs(out puti− IdealOut puti)/area. (12)

We fix the quantization size using m = 2 and k = −m, and evaluate all 10 incremental quantization frameworks.
The results are shown in Figure 8(a). We can notice that the quantized templates achieve similar accuracy compared
with the original template without quantization. The lowest accuracy is about 12% lower than that with the original
templates. The highest accuracy is achieved with WNN-C strategy, which is only 3% lower than that of the original
templates. Note that generally PI strategy achieves the best performance for CNNs [38]. However, WNN strategy
obtains the best performance for CeNN, and NN strategy also obtains a comparable performance. We can also find
that NN and WNN strategy are much stable than PI as NN and WNN can achieve almost the same accuracy for
constant and logscale batch sizes while PI not. Even random strategy can have a better accuracy than PI in some
configurations. In terms of batch size, constant seems to perform better than log-scale in most cases. It can be
interesting in the future to study this in more detail and figure out a systematic way to decide the optimal strategy.

The impact of batch sizes is presented in Figure 8(b) with the optimal partition WNN-C. The quantization set
size has an interesting relationship with the performance. First, even when the quantization set is only of three values
(-1, 0, 1), the quantized template can still achieve high accuracy. Second, there exists an optimal m which gives the
best performance and m=3 for medical image segmentation. Further increasing m will not provide any performance
gain.

4.1.3 Obstacle Detection for ADAS

We adopts the same objective function as medical image segmentation. The pattern structures of the 3×3 templates
A and B are as follows: A = {a0,a0,a0;a0,a1,a0; a0,a0,a0}, and B = {a2,a2,a2;a2,a3,a2;a2,a2,a2}. The training
dataset is from [40] as shown in Figure 9, which is the of the same configuration with the work [28]. For test dataset,
totally 40 test images are selected from Hlevkin test images collection [41].

We fix the quantization size using m = 2 and k = −m, and evaluate all 10 incremental quantization frameworks.
The results are depicted in Figure 10(a). From the figure we can observe that the quantized templates achieve similar
accuracy compared with the original template without quantization. The lowest accuracy is about 15% lower than
that with the original templates. Like medical image segmentation, the highest accuracy for obstacle detection is

m ieee-cps.org Page 10

http://www.ieee-cps.org/

Ideal output of AImage A

Figure 9: Training image and the manually detected image taken from [40].

C L C L C L C L C L
RAN PI WPI NN WNN

85

90

95

100

A
c

c
u

ra
c

y
 (

%
)

(a) m=2, k=-2

m
1 2 3 4 5

92

93

94

95

96

97

98

A
cc

u
ra

cy
 (

%
)

(b) NN-L, k=-m

Figure 10: Performance comparison between templates with various (a) strategies and (b) quantization sizes m for
obstacle detection.

achieved with WNN-C strategy, which is only 3% lower than that of the original templates, and constant strategy
also performs better than log-scale in most cases. The impact of batch sizes is presented in Figure 10(b) with the
optimal partition WNN-C. The quantization set size has the same relationship with the performance as that for
medical image segmentation.

4.2 Speed Evaluation Using FPGAs

In previous section we have evaluated the performance of our CeNN quantization framework in terms of accuracy.
In this section we will evaluate its speed when implemented in FPGAs. For a fair comparison with existing works
[21][33][37], we adopt the same configurations of stages and try to place the maximum possible number of stages
utilizing our quantized templates. Note that all the three works share the same architecture for CeNN computa-
tion. The performance of the implementation is evaluated by equivalent computing capacity which is the product
of number of stages and the computing capacity of each stage. The proposed efficient hardware implementation is
implemented on an XC4LX25 FPGA. The data width of the input, state, and output (u, x, and y) is configured to
be 18 bits. The widely-used template size 3×3 is adopted. Note that general CeNN is adopted for the FPGA imple-
mentation, and delayed CeNN is not considered here. Time-variant templates are configured. In the implementation,
multiplication is achieved with embedded multipliers (more specifically, DSP48 modules on XC4LX25 FPGAs) at
first, and shifters are used when there are no more available embedded multipliers. Considering the routability of
FPGAs, the utilization rate of LEs and registers are constrained to be no higher than 80%. Note that since different
quantization frameworks only affects the performance and do not show significant difference in hardware resource
utilization, in this part of experiments we simply use WNN-L with m=5 and k=-5, and other frameworks should
yield almost identical speed.

Three configurations of 2D convolution are discussed: one, three and nine multipliers. In Table 3, applying our
quantization framework can lead to a 1.2x speedup with increased use of LEs (by 17%) and registers (by 8%) This
allows an additional 4 stages to be placed, with a speedup of 1.2x.

Further taking sparsity-induced optimization into consideration, a speedup of 1.8x is achieved in the 2D convolu-
tion module with computations involving with template A for segmentation. However, no sparsity exists in template
B, and there is no overall speedup, as sparsity-induced optimization can only yield speedup when sparsity exists in
both templates A and B. Therefore, the speedup still remain about the same. Yet after the introduction of repetition-
induced optimization, the speedup can be further increased to 1.4x with slightly reduced resource usage (due to the
reduction of computations needed). Note that these conclusions are application-specific. Similar conclusions reside
with obstacle detection. The proposed architecture achieves a little lower clock frequency due to the high resource

m ieee-cps.org Page 11

http://www.ieee-cps.org/

Table 3: Speed and resource utilization comparisons of the state-of-the-art work [37] and ours with one multiplier
(Mult.)/shifter (Shif.) in 2D convolution module, with sparsity-induced optimization and repetition-induced opti-
mization. The numbers in the brackets are the resource utilization rate.

IMPLEMENTATION
STATE-OF
-THE-ART
(1 MULT.)

OURS
(1 SHIF.)

OURS
(1 SHIF.+

SPARSITY)

OURS
(1 SHIF.+

REPETITION)
OF STAGES 24 28 28 24
LES (×103) 14.6(60%) 18.7(77%) 18.7(77%) 18.4(76%)

REGISTER(×103) 8.8(40%) 10.5(48%) 10.5(48%) 9.9(46%)
EMBEDDED

MULT.
48(100%) 48(100%) 48(100%) 48(100%)

CLOCK F. (MHZ) 353 331 331 322
CYCLES PER

PIXEL
11 11 11 8

SPEEDUP 1 1.2x 1.2x 1.4x

Table 4: Speed and resource utilization comparisons of the state-of-the-art work [37] and ours with three and
nine multipliers(Mult.)/shifter (Shif.) in 2D convolution module. The numbers in the brackets are the resource
utilization rate.

IMPLEMENTATION
STATE-OF
-THE-ART
(3 MULT.)

OURS
(3 SHIF.)

STATE-OF
-THE-ART
(9 MULT.)

OURS
(9 SHIF.)

OF STAGES 6 16 2 7
LES(×103) 3.8(15%) 19.6(80%) 1.4(5%) 18.2(76%)

REGISTERS(×103) 2.1(10%) 6.5(30%) 0.6(2%) 3.6(17%)
EMBEDDED

MULT.
48(100%) 48(100%) 46(95%) 48(100%)

CLOCK F.(MHZ) 337 320 361 343
CYCLES PER

PIXEL
5 5 1 1

SPEEDUP 1 2.6x 1 3.5x

utilization making placement and routing relatively more difficult.
For the configuration of 2D convolution with multiple multipliers, sparsity-induced and repetition-induced op-

timizations doing very limited optimizations with multiple multipliers are not involved. As shown in Table 4, the
the state-of-the-art work [37] has a very low resource utilization (2%-15%) with LEs and registers. With the abun-
dant resources, 10 and 5 more stages can be placed on FPGAs with shifters as a replacement of multipliers for the
implementation configured with three and nine multipliers, respectively, resulting in a speedup of 2.6x and 3.5x.

As the CeNN architecture composed with stage modules are highly extensible, we make a reasonable projec-
tions to high-end FPGAs to see how the resources available in an FPGA affect the speedup. According to existing
implementations on FPGAs and resource constraint of 80% LE and register utilization rate bound, the clock fre-
quencies are assumed to be the same in the comparison. The configuration of 2D convolution with nine multipliers
is adopted, which has the highest performance. We select four high-end FPGAs from Altera and Xilinx with about
500,000 to 1,000,000 LEs. As shown in Table 5, our implementations can achieve a speedup of 1.7x-7.8x. Note that
the resource consumption of LEs and registers are almost the same for all the implementations, and the speedup
varies with the number of embedded multipliers, or more specifically, the ratio of LEs to embedded multipliers. A
high ratio of LEs to embedded multipliers means more LEs can be used to implement shifters resulting with a high
speedup. The highest speedup of 7.8x is due to the fact that the Stratix V E FPGA has the highest rate of LEs to
embedded multipliers.

m ieee-cps.org Page 12

http://www.ieee-cps.org/

Table 5: Speed and resource utilization projections to high-end FPGAs of the state-of-the-art work [37] and ours
with nine multipliers/shifters in 2D convolution module. The numbers in the brackets are the resource utilization
rate.

IMPLEMENTATION VC7VX-
980T

VC7VX-
585T

STRATIX
V E

STRATIX
V GS

OF STAGES 352 179 233 291
LES(×103) 780(80%) 465(80%) 718(80%) 524(80%)

REGISTERS(×103) 170(17%) 93(16%) 133(15%) 128(19%)
EMBEDDED

MULT.
3600(100%)1260(100%)704(100%)3926(100%)

SPEEDUP 2.3x 3.3x 7.8x 1.7x

5 Conclusions

In this paper, we propose CeNN quantization for computation reduction for CPS, particularly telemedicine and
ADAS. The powers-of-two based incremental quantization adopts an iterative procedure including parameter parti-
tion, parameter quantization, and re-training to produce templates with values being powers of two. We propose a
few quantization strategies based on the unique CeNN computation patterns. Thus, multiplications are transformed
to shift operations, which are much more resource-efficient than general embedded multipliers. Furthermore, based
on CeNN template structures, sparsity-induced and repetition-induced optimizations for quantized templates are also
exploited for situations where resources are extremely limited. Experimental results on medical image segmenta-
tion for telemedicien and obstacle detection for ADAS show that the proposed quantization framework can achieve
similar performance compared with that using original templates without optimization, and the implementation with
incremental quantization can achieve a speedup up to 7.8x compared with the state-of-the-art FPGA implementa-
tions. We also discover that unlike CNNs, the optimal strategy of CeNNs is weighted nearest neighbor strategy other
than pruning-inspired strategy.

References

[1] Khaitan et al., Design Techniques and Applications of Cyber Physical Systems: A Survey, IEEE Systems
Journal, 2014.

[2] S. J. Carey, D. R. Barr, B. Wang, A. Lopich, and P. Dudek. Mixed signal simd processor array vision chip for
real-time image processing. Analog Integrated Circuits and Signal Processing, 77(3):385–399, 2013.

[3] S.-H. Chae, D. Moon, D. G. Lee, and S. B. Pan. Medical image segmentation for mobile electronic patient
charts using numerical modeling of iot. Journal of Applied Mathematics, 2014, 2014.

[4] X. Xu, F. Lin, and et al., “Mda: A reconfigurable memristor-based distance accelerator for time series mining
on data centers,” TCAD, 2018.

[5] X. Xu, Y. Ding, and et al., “Scaling for edge inference of deep neural networks,” Nature Electronics, vol. 1,
no. 4, p. 216, 2018.

[6] X. Xu, Q. Lu, and et al., “Quantization of fully convolutional networks for accurate biomedical image segmen-
tation,” CVPR, 2018.

[7] H.-C. Chen, Y.-C. Hung, C.-K. Chen, T.-L. Liao, and C.-K. Chen. Image-processing algorithms realized
by discrete-time cellular neural networks and their circuit implementations. Chaos, Solitons & Fractals,
29(5):1100–1108, 2006.

[8] L. O. Chua and T. Roska. Cellular neural networks and visual computing: foundations and applications.
Cambridge university press, 2002.

m ieee-cps.org Page 13

http://www.ieee-cps.org/

[9] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks: Training deep
neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[10] F. Dohler, F. Mormann, B. Weber, C. E. Elger, and K. Lehnertz. A cellular neural network based method for
classification of magnetic resonance images: towards an automated detection of hippocampal sclerosis. Journal
of neuroscience methods, 170(2):324–331, 2008.

[11] M. Duraisamy and F. M. M. Jane. Cellular neural network based medical image segmentation using artificial
bee colony algorithm. In Green Computing Communication and Electrical Engineering (ICGCCEE), 2014
International Conference on, pages 1–6. IEEE, 2014.

[12] H. Harrer and J. A. Nossek. Discrete-time cellular neural networks. International Journal of Circuit Theory
and Applications, 20(5):453–467, 1992.

[13] H. Harrer, J. A. Nossek, T. Roska, and L. O. Chua. A current-mode dtcnn universal chip. In Circuits and
Systems, 1994. ISCAS’94., 1994 IEEE International Symposium on, volume 4, pages 135–138. IEEE, 1994.

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In Advances in
Neural Information Processing Systems, pages 4107–4115, 2016.

[15] K. Karacs, G. Cserey, Zarndy, P. Szolgay, C. Rekeczky, L. Kek, V. Szab, G. Pazienza, and T. Roska. Soft-
ware library for cellular wave computing engines. Cellular Sensory and Wave Computing Laboratory of the
Computer and Automation Research Institute, 2010.

[16] S. Lee, M. Kim, K. Kim, J.-Y. Kim, and H.-J. Yoo. 24-gops 4.5-mm2 digital cellular neural network for rapid
visual attention in an object-recognition soc. IEEE transactions on neural networks, 22(1):64–73, 2011.

[17] H. Li, X. Liao, C. Li, H. Huang, and C. Li. Edge detection of noisy images based on cellular neural networks.
Communications in Nonlinear Science and Numerical Simulation, 16(9):3746–3759, 2011.

[18] M. Magdalena and U. G. B. Bujnowska-Fedak. Use of telemedicine-based care for the aging and elderly:
promises and pitfalls. Smart homecare Technology & telehealth, 3:91–105, 2015.

[19] D. Manatunga, H. Kim, and S. Mukhopadhyay. Sp-cnn: A scalable and programmable cnn-based accelerator.
IEEE Micro, 35(5):42–50, 2015.

[20] G. Manganaro, P. Arena, and L. Fortuna. Cellular neural networks: chaos, complexity and VLSI processing,
volume 1. Springer Science & Business Media, 2012.

[21] J. J. Martnez, J. Garrigs, J. Toledo, and J. M. Ferrndez. An efficient and expandable hardware implementation
of multilayer cellular neural networks. Neurocomputing, 114:54–62, 2013.

[22] J. Muller, R. Wittig, J. Muller, and R. Tetzlaff. An improved cellular nonlinear network architecture for binary
and greyscale image processing. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016.

[23] R. Porter, J. Frigo, A. Conti, N. Harvey, G. Kenyon, and M. Gokhale. A reconfigurable computing framework
for multi-scale cellular image processing. Microprocessors and Microsystems, 31(8):546–563, 2007.

[24] S. Potluri, A. Fasih, L. K. Vutukuru, F. Al Machot, and K. Kyamakya. Cnn based high performance computing
for real time image processing on gpu. In Nonlinear Dynamics and Synchronization (INDS) & 16th Int’l
Symposium on Theoretical Electrical Engineering (ISTET), 2011 Joint 3rd Int’l Workshop on, pages 1–7. IEEE,
2011.

[25] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In European Conference on Computer Vision, pages 525–542. Springer, 2016.

m ieee-cps.org Page 14

http://www.ieee-cps.org/

[26] X. Xu, Q. Lu, T. Wang, J. Liu, C. Zhuo, S. Hu, and Y. Shi. Empowering Mobile Telemedicine with Compressed
Cellular Neural Networks. In Proc. of IEEE/ACM 2017 International Conference On Computer-Aided Design.
IEEE/ACM, 2017.

[27] A. Rodrguez-Vzquez, G. Lin-Cembrano, L. Carranza, E. Roca-Moreno, R. Carmona-Galn, F. Jimnez-Garrido,
R. Domnguez-Castro, and S. E. Meana. Ace16k: the third generation of mixed-signal simd-cnn ace chips
toward vsocs. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(5):851–863, 2004.

[28] R. Rouhi, M. Jafari, S. Kasaei, and P. Keshavarzian. Benign and malignant breast tumors classification based
on region growing and cnn segmentation. Expert Systems with Applications, 42(3):990–1002, 2015.

[29] H. Song, P. Jeff, T. John, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In 4th International Conference on Learning Representations, 2016.

[30] J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, I. Ricketts, E. Stamatakis, N. Cerneaz, S. Kok,
et al. The mammographic image analysis society digital mammogram database. In Exerpta Medica. Interna-
tional Congress Series, volume 1069, pages 375–378, 1994.

[31] H. Wong, V. Betz, and J. Rose. Comparing fpga vs. custom cmos and the impact on processor microarchitec-
ture. In Proceedings of the 19th ACM/SIGDA international symposium on Field programmable gate arrays,
pages 5–14. ACM, 2011.

[32] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional neural networks for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4820–4828, 2016.

[33] N. Yildiz, E. Cesur, K. Kayaer, V. Tavsanoglu, and M. Alpay. Architecture of a fully pipelined real-time cellular
neural network emulator. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(1):130–138, 2015.

[34] Z. Liu, C. Zhuo, and X. Xu, “Efficient segmentation method using quantised and non-linear cenn for breast
tumour classification,” Electronics Letters, 2018.

[35] X. Xu, Q. Lu, and et al., “Efficient hardware implementation of cellular neural networks with incremental
quantization and early exit,” JETC, vol. 14, no. 4, p. 48, 2018.

[36] X. Xu, F. Lin, and et al., “Accelerating dynamic time warping with memristor-based customized fabrics,”
TCAD, vol. 37, no. 4, pp. 729–741, 2018.

[37] N. Yildiz, E. Cesur, and V. Tavsanoglu. On the way to a third generation real-time cellular neural network
processor. CNNA 2016, 2016.

[38] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization: Towards lossless cnns with
low-precision weights. In 5th International Conference on Learning Representations, 2017.

[39] X. Xu, X. Zhang, and et al., “Dac-sdc low power object detection challenge for uav applications,” arXiv preprint
arXiv:1809.00110, 2018.

[40] D. Feiden and R. Tetzlaff. Obstacle detection in planar worlds using cellular neural networks. In Cellular
Neural Networks and Their Applications, 2002.(CNNA 2002). Proceedings of the 2002 7th IEEE International
Workshop on, pages 383–390. IEEE, 2002.

[41] Hlevkin. http://www.hlevkin.com/06testimages.htm, 2017.

m ieee-cps.org Page 15

http://www.ieee-cps.org/

	1 Introduction and Motivation
	2 Preliminaries
	2.1 Cellular Neural Networks
	2.2 Template Learning Algorithm and PSO Algorithm
	2.3 Motivation

	3 CeNN Quantization and Hardware Implementation
	3.1 Incremental Quantization
	3.1.1 Parameter Partition
	3.1.2 Parameter Quantization
	3.1.3 Incremental Re-training Algorithm

	3.2 Efficient Hardware Implementations
	3.2.1 Shifter Module
	3.2.2 Data Scheduler Module

	4 Experiments
	4.1 Performance Evaluation
	4.1.1 Experimental Setup
	4.1.2 Medical Image Segmentation for Telemedicine
	4.1.3 Obstacle Detection for ADAS

	4.2 Speed Evaluation Using FPGAs

	5 Conclusions

