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As one of the most commonly ordered imaging tests, computed tomography (CT) scan comes with inevitable
radiation exposure that increases the cancer risk to patients. However, CT image quality is directly related to
radiation dose, thus it is desirable to obtain high quality CT images with as little dose as possible. CT image
denoising tries to obtain high dose like high-quality CT images (domain Y) from low dose low-quality CT
images (domain X), which can be treated as an image-to-image translation task where the goal is to learn
the transform between a source domain X (noisy images) and a target domain Y (clean images). Recently,
cycle-consistent adversarial denoising network (CCADN) has achieved state-of-the-art results by enforcing
cycle-consistent loss without the need of paired training data, since the paired data is hard to collect due to
patients’ interests and the cardiac motion. On the other hand, out of concerns on patients’ privacy and data
security, protocols typically require clinics to perform medical image processing tasks including CT image
denoising locally, i.e., edge denoising. Therefore, the network models needs to achieve high performance
under various computation resource constraints including memory and performance. Our detailed analysis
of CCADN raises a number of interesting questions which point to potential ways to further improve its
performance using same or even less computation resources. For example, if the noise is large leading to
significant difference between domain X and domain Y, can we bridge X and Y with a intermediate domain
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Z such that both the denoising process between X and Z and that between Z and Y are easier to learn? As
such intermediate domains lead to multiple cycles, how do we best enforce cycle-consistency? Driven by
these questions, we propose a multi-cycle-consistent adversarial network (MCCAN) that builds intermediate
domains and enforces both local and global cycle-consistency for edge denoising of CT images. The global
cycle-consistency couples all generators together to model the whole denoising process, while the local
cycle-consistency imposes effective supervision on the process between adjacent domains. Experiments show
that both local and global cycle-consistency are important for the success of MCCAN, which outperforms
CCADN in terms of denoising quality with slightly less computation resource consumption.
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methodologies.
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1 INTRODUCTION

The privacy and security of patient data have always been the primary concern in medical applica-
tions among hospitals and clinics. As such, protocols typically require medical image processing
tasks such as denoising, segmentation, and diagnosis to be performed locally, i.e., on the edge. How-
ever, local machines and devices are usually with rather limited computation resources including
memory capacity and performance compared with those in the cloud. The constrained resources
can have profound impact on the design of medical image processing algorithms. In this paper, we
will use Computed tomography (CT) image denoising as a vehicle to demonstrate it.

CT is one of the most widely used medical imaging modality for showing anatomical structures
[31]. The foremost concern of CT examination is the associated exposure to radiation, which is
known to increase the lifetime risk for death of cancer [8]. The radiation dose can be lowered at the
cost of increased noise [14, 31]. Such noise in CT image leads to both degraded perceptual quality
and degraded diagnostic confidence of a doctor. A general principle in dose management in practice
is “as low as reasonably achievable” [19]. Thus the resulted images are denoised for minimized
the loss on perceptual quality and diagnostic confidence of radiologists. Even with tremendous
effort and significant progresses in the past few decades, the radiation exposure of CT scan was
still estimated to account for up to two percent of cancer in United States [24].

Various deep neural network (DNN) based methods exist for CT image denoising [3, 23, 26, 29],
which require paired clean and noisy images for training. Yet paired images are hard to collect due
to patients’ interests and the cardiac motion. Therefore, simulations are usually used to generate
such paired data, where the simulated noise patterns can be different from the real ones, leading to
biased training results [11]. To address this issue, recently cycle-consistent adversarial denoising
network (CCADN) was proposed in [11], which formulates CT image denoising as an image-to-
image translation problem without paired training data. CCADN consists of two generators: One
transforms noisy CT images (domain X) to clean ones (domain Y) and the other transforms clean
CT images (domain Y) to noisy ones (domain X). Both generators are trained by adversarial loss.
In addition, they form a cycle where a noisy CT image can be transformed to a clean one and
transformed back to a noisy one (i.e, X — Y — X). Cycle-consistency loss is defined by the
difference between the two noisy CT images, which is a key component to control the training of
both generators for better performance. Cycle-consistency loss is also imposed for Y - X — Y
transform. However, CCADN only works well when the noise levels are low. This is due to the fact
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Fig. 1. Comparison of domians in (a) CCADN and (b) the proposed MCCAN. CCADN performs single-cycle-
consistent adversarial training with two domains, while the proposed MCCAN performs multiple-cycle-
consistent adversarial training with more than two domains, e.g., three.

that it only contains two domains X and Y and therefore its efficacy degrades as the noise becomes
stronger, leading to larger differences between X and Y that are harder to learn. A larger neural
network with stronger representation power is needed, which may not be feasible with the limited
computation resources on the edge.

To enhance the performance of CCADN without increasing the resource consumption, as shown
in Fig. 1, we propose to establish an intermediate domain between the original noisy image domain
X and clean image domain Y, and decompose the denoising task into multiple coupled steps such
that each step is easier to learn by DNN-based models. Specifically, we construct an additional
domain Z with images of intermediate noise level between X and Y. These images can be considered
as a step stone in the denoising process and provide additional information for the training of the
denoising network. The multi-step framework particularly suits the denoising problem: while it
is difficult to either find or define a good collection of images in the “half-cat, half dog" domain
in “cat-to-dog” type of image translation problems, a domain Z of images with intermediate level
of noise exist naturally. In addition, when the denoising problem (two domains) is divided into
several subproblems (N domains), each subproblem is much easier to solve. In this way, the network
complexity for each subproblem (e.g., number of parameters) is usually lower than 1/(N — 1) of
the original network [28]. Thus, the overall computation consumption can be reduced.

With the new domain Z, we further propose a multi-cycle-consistent adversarial network to
perform the multi-step denoising, which builds multiple cycles of different scales (global cycles
and local cycles) between the domains while enforcing the corresponding cycle-consistencies.
Specifically, global cycles combine all the generators and domains together to model the entire
denoising process. The local cycles serve two purposes. First, they impose effective supervision
on the generators between adjacent domains. Second, while each step is easier, the multi-step
framework leads to deeper networks and makes it challenging for end-to-end training. The local
cycles can provide gradient from the supervised training of easier tasks on shallower networks and
thus alleviating the problem. The experimental results show that both global cycles and local cycles
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are necessary, and our method MCCAN outperforms the state-of-the-art competitor CCADN with
a slightly less resource consumption.

2 RELATED WORKS
2.1 CT Image Denoising

Numerous CT image denoising methods can be categorized as three types: signogram filtering-
based method, iterative reconstruction, and image space denoising [31]. The first two types of
methods are usually embedded within the CT scanner as commercial algorithms, thus we focus
more on the last type of methods for research.

Signogram filtering-based method perform in the original projection space before filtered back-
projection is applied to reconstruct images [15, 18]. One common advantage of these method is the
noise properties in projection space are fairly well-understood. However, the image sharpness may
degrade because the edges are not well-defined in projection data [14].

Iterative reconstruction are considered the most accurate one by using statistical assumptions
about the noise properties in projection space, prior information in image space, and various
accurate information of the specific scanner [21]. However, the implementation highly depend on
specific scanner models and is very computational extensive for each scan [14, 27].

Image space denoising is performed on the reconstructed images and thus the computation cost
is much lower than that in the first two category. In recently years, deep neural networks and
various method developed in other area are combined with CT image denoising including GAN,
autoencoder, perceptual loss, transfer learning, 3D convolution [3, 23, 26, 29]. Mostly recently,
CycleGAN is applied to CT denoising as CCADN and achieves better results than state-of-the-art
[11].

It can be hard to find a standard metric to measure the denoising performance when there is no
paired samples for test. For the protection of patients and operators, repetitive CT scan is usually
not permitted due to the additional radiation dose. Even if repetitive scan is available, the cardiac
motion or the changed operating condition will make two scans different. This problem is alleviated
by simulating corresponding low dose images from high dose images with noise modeling [6, 12].
However, noise should be added in the sinogram domain in the synthetic CT scan images, which is
too difficult to implement without the assistance from the CT scanners’ vendor [11]. Besides, the
additional noise pattern can be different from the real noise pattern. This will introduce bias in the
data and end up with biased denoising models.

2.2 Image-to-lmage Translation

Our work are closely related to some of the popular image-to-image translation models using
generative adversarial networks [9] or neural style transfer [10]. Image-to-image translation also
includes some other artifact removal problems similar to denoising such as raindrop removal and
shadow removal [16, 22, 25]. [25] uses a joint-learned two-step approach for shadow removal where
one conditional GAN [20] is used to detect the shadow region and the result is used by another
conditional GAN for shadow removal. However these two steps are mostly specific to a small set of
problems and can not be applied to other cases with more steps.

While the using of cycle consistency loss has achieved significant progresses [13, 30, 32], these
models still have some drawbacks. CycleGAN often succeeds on translation of low level features
including color and texture but has little success on tasks with geometric changes [32]. We anticipate
that the multiple-step approach can potentially alleviate this problem. On the other hand, CycleGAN
can be inefficient for translation in multiple domains, because the number of translation model
grows quadratically with the number of domains. Motivated by this, StartGAN and ComboGAN
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[1, 4] propose new models to get better scalability. The training method of CycleGAN in the
facial attribute transfer experiment in [4] is essentially the MCCAN without global cycles. The
ComboGAN is used to perform multi-step transformation (e.g. changing gender after changing hair
color). The results show that the image quality degrade with more translation steps. We analyze
the possible reasons, the lack of global cycles, in Section 3.

Coupled GAN (CoGAN) is proposed in [17] to learn a joint distribution in different domains
without paired samples. Based on the assumption that deep neural networks learn a hierarchical
feature representation, COGAN enforces the GANSs to decode high-level semantics in the same way
by sharing the weights. In order to translate a image x in domain X to domain Y, it have to find the
random vector that generates x through the generator for X and they apply the generator for Y to
this random vector. Such a search process could be very time consuming [5]. Another limitation is
the transformation only success when x is covered by the generator for X (can be generated by this
generator). While it is not discussed in their paper, we found that their approach implicitly uses
a feature map domain as a bridge for the translation. Specifically, if we assume the query image
is always covered by the corresponding generator, their structure can be consider as building a
domain graph what each images domain is connected to a central feature map domain. When doing
the translation, it always translate as X — Z — Y where Z is the feature map domain. In this
paper, we equip MCCAN with available CT images from different domains (radiation dose) directly
for the denoising task while without increasing the resource consumption.

3 MULTI-CYCLE-CONSISTENT ADVERSARIAL NETWORKS

Given training images that are either labelled as noisy (domain X) or clean (domain Y), we first
construct a new domain Z which contains images with an intermediate noise level between X and
Y. How to obtain Z is flexible in practice. It can either be obtained from X and Y by separating out
those images with intermediate noise level if available, or from images scanned with medium dose,
or from common techniques including injecting intermediate level of noise to the images in Y.

Fig. 2. (a) Structure of MCCAN and (b) its cycles. The arrows inside each domain denote the computation of
cycle-consistency loss. The solid and dashed arrows across domains form global and local cycles, respectively.
For clarity, we only show cycles from left to right. Symmetric cycles going from right to left also exist but are
not shown.

With CT images from three domains, the multi-step denoising architecture of MCCAN is shown
in Fig. 2a. We train four convolutional neural networks as generators and three as discriminators.
Arrows in Fig. 2a define how images are transformed in the training stage. Specifically, the generator
Gx_,z aims to transform an image from X to Z. Gz_,x, Gz_,y, and Gy_, 7 can be interpreted similarly.
Discriminators Dy, Dy, and Dy aim to distinguish the “real” images originally belonging to the
domains X, Y, and Z respectively from the “fake” images transformed from other domains.
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As the MCCAN structure in Fig. 2a contains thee domains, there are multiple ways in which we
can construct cycles (paths where an image from a source domain is transformed through one (in
[32]) or several other domains (in this paper) and back to the source domain) for cycle-consistent
loss. In particular, we introduce two types of cycles as shown in Fig. 2b. In this figure, each dot
represents an image, which is color-coded based on the domain. The solid ones represent the
images originally in the domain (“real” ones), and the hollow ones represent those transformed
from another domain (“fake” ones). As such, the dashed arrows form the local cycles, each of
which goes across only two adjacent domains. On the other hand, the solid arrows constitute a
global cycle that starts from X through Z, Y, Z, and back to X sequentially. Note that in the figure
we only show half of the cycles (from left to right) for clarity, and the other half which are from
right to left and symmetric to the ones shown also exist. We then enforce cycle-consistency loss,
which measures the difference between the original images and the final images produced at the
end of the cycle as represented by the small arrows within each domain in Fig 2b. Ideally, the
images transformed back to the source domain should be identical to the original images. The
cycle-consistency loss is applied to every cycle, no matter whether it is local or a global.

The global cycles are important for the denoising performance due to the following reason. In the
inference stage, an input noisy CT image x in domain X will be transformed by Gx_,7 and Gz_,y
sequentially, which means Gx_,z and Gz_,y are coupled by data dependency. Without global cycles,
Gx—z and Gz_,y will be trained independently. The global cycles enable the joint training of the
generators, which models the denoising path used in the inference stage for better consistency.

The local cycles are also important to address two issues in the training. First, the global cycles
go through all the four generators and have long paths for the gradient to back-propagate, which
makes the end-to-end optimization difficult. The locals cycles are shallow and have shorter paths
for the gradient to back-propagate. Second, adversarial training only enforces the generators to
output “fake” images identically distributed as the original “real” images in the intermediate domain
Z. However, they do not necessarily preserve the meaningful content in the inputs, which is critical
for the denoising task. The local cycle-consistency supervises each generator to learn to transform
images while preserving their meaningful content from the inputs more easily.

In summary, our MCCAN has three major advantages over CCADN. First, it decomposes the
one-step transform into multiple steps using constructed images in a intermediate domain as a step
stone. Second, it not only incorporates global cycles that model the denoising path in the inference
stage for consistency, but also uses local cycles that provide strong supervision to facilitate the
more challenging training process. Third, the network structure of generators can be simplified
due to the relatively easier task in each transformation, thus potentially reducing memory and
computation consumption.

Note that in the discussion so far, only one intermediate domain was assumed. It is also possible
to include more than one intermediate domains with more global and local cycles. However, our
study suggests that any additional domains beyond one will not introduce further performance
gain in the dataset we explored.

3.1 Network Architectures

We compare MCCAN with a state-of-the-art CT denoising framework CCADN [11]. In order to see
how the local cycles and global cycles contribute to the final performance, we also implement and
compare MCCAN without local cycles and without global cycles respectively as ablation study.
The various structures are shown in Fig. 3. or the clarity of presentation, only cycles from left to
right are shown, but symmetric cycles from right to left also exist.

To ensure that model sizes, computation operations, and number of training epochs are the
same for fair comparisons, different network structures are applied in experiments. Generally
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Fig. 3. Comparison of (a) CCADN, (b) MCCAN without global cycles (c) MCCAN without local cycles, and
(d) MCCAN. For the clarity of presentation, we only show cycles from left to right and symmetric cycles from
right to left also exist.
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Fig. 4. Network architectures of generators for (a) MCCAN, and (b) CCADN. ResBlock represents residual
blocks [7]. For MCCAN, MCCAN without local cycles, and MCCAN without global cycles, the network
architecture in (b) are shared. Because every generator in such frameworks, the generator only transfer
between adjacent domains. Nevertheless, generators in CCADN need to transfer images between more than
one domains, thus with larger networks.

speaking, all discriminators are used for a same discrimination task in each image domain, so
all discriminators share a same network structure. However, generator structures are different
for different tasks, since the capability of generators denoising by one step and the capability of
generators denoising by more steps, two step here, are supposed to be different.
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Traditional convolution networks are used as the discriminator for all domains in all experiments.
In terms of the generators, since there are two types of generators in our experiments, different
network architectures are utilized in our experiments. Both network architectures share the same
layers for pre-processing and post-processing, as shown in Fig. 4. However, the generators trans-
ferring images images between two domains that are more different from each other should have
more layers and parameter, and vice versa. So the generators in CCADN is implemented with more
residual blocks (ResBlock) as shown in Fig. 4b, while generators in MCCAN, MCCAN without
local cycles, and MCCAN without global cycles are all implemented as the network architecture
shown in Fig. 4a. As a result, the total number of parameters used in each experiment in inference
is around 11M to make sure that each method consumes the same memory resources.

3.2 Training Objectives

Finally, we state the training objective used in our framework. Denote {G} and {D} as the set
of generators and discriminators respectively. Denote I € {X, Y, Z} as one domain and Dy as the
discriminator associated with domain I. We let C; be a cycle and P; ; be a path of half C; that has
the same source domain, where i, j are used to distinguish different cycles and paths merely. For
example, X — Z — X is a cycle, saying Cy, thus we canhave P;; =X — Z,and P;; = Z — X,
which are both half cycles of C;. {P;} represents the set of all the paths that end at domain I.
We denote I, as the source domain of C; and Gp, ; as the ordered function composition of the
generators in P; ;. Thus, the total adversarial loss is

Loan({G}, {D}) = Z Z Loan (I, Pyj) (1)

IE{X,Y,Z} P,"j E{PI }
where Lgan (I, Pi ;) is the adversarial loss associated with domain I and the transform path P; ;.
Lcan (I, P ;) is obtained by
Lean (L Py j) =Ey-py.o(r log D1(y)]
+ Expaaraic,) [109(1 = Dr(Gp,; (x)))]
where pgarq is the distribution of “real” images in a domain and Dj(x) represents the probability
determined by Dj that x is a “real” image from domain I rather than a “fake” one transformed by

generators from another domain.
The cycle-consistency loss is associated with each C;, defined as

Lcyc({G}, Cl) = EXNPdata(IC,—) [IGC,' (x) - xll] . (3)
The identity loss is associated with each generator in G, defined as
Lu(Ch= 3 >
I1e{X.Y,Z} Je{X,Y.Z} J#I (4)
Expiua(n [1Gy-1(x) = x11]).

(2)

The final optimization problem we solve in the training stage is:
G}' = i GLA{D
{G} =argminmax(Loan ({G} {D})
+Acyc Z -[«cyc({G}s Ci) (5)

C;e{C}
+ Aiae - Liat ({G}).

where Acyc and Aig; are set to 10 and 0.5 respectively in our experiments.
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Table 1. Comparison of denosing performance between configurations using different number of domains in
MCCAN over the selected areas in Fig. 5a.

Method Mean | SD

Original 1321.2 | 84.5

CCADN (two domains)[32] | 1284.1 | 67.8
MCCAN (three domains) | 1251.4 | 60.6
MCCAN (four domains) | 1244.1 | 77.6

4 EXPERIMENTS AND RESULTS
4.1 Experiments Setup

The original dataset contains 200 clean (normal-dose) 3D cardiac CT images and 200 noisy (low-
dose) ones from various patients for training, and separate 11 images for test. The dataset is captured
from 6 patients (3 for normal dose and 3 for low dose). All examinations are performed with a wide
detector 256-slice MDCT scanner (Brilliance iCT; Philips Healthcare) providing 8cm of coverage.
Each 2D CT image is of size 512x512, which is then randomly cropped into 256x256 for data
augmentation. We extract the noise pattern from the noisy CT images and add them to the clean
CT images with a weighting factor % to generate new CT images with the intermediate noise level.

Following existing works [2, 26, 29], we use the mean and standard deviation (SD) of pixels in
homogeneous regions of interest chosen by our radiologists to quantitatively judge the quality of
CT images. The mean, which reflects substance information, should be as close to that in the origin
image as possible, and the standard deviation, which reflects noise, should be as low as possible.

We first discuss how the number domains affects the denoising performance of MCCAN. Then
we compare MCCAN with a state-of-the-art CT denoising framework CCADN [11], which is also
based on cycle-consistency loss but contains only two domains. In order to see how the local cycles
and global cycles contribute to the final performance, we also implement and compare MCCAN
without local cycles and without global cycles respectively as ablation study. The various structures
are shown in Fig. 3. We train all the networks following the setting in [32]. As shown in Fig. 5
and Fig. 6, six images chosen by our radiologist are used for the qualitative evaluation, and 12
homogeneous areas annotated by red rectangles and numbered are used for quantitative evaluation.
All network sizes and number of training epochs are the same for fair comparisons.

4.2 Discussion of Number of Domains

As shown in Table 1, the average mean and SD in five areas indicated in Fig. 5a are presented.
Compared with the original image, CCADN can largely reduce the noises by about 20%. MCCAN
with three domains can further improve the image quality with reduced noise by about 8.4%.
However, MCCAN with four domains obtains reduced improvement compared with that with three
domains and CCADN. Actually this is expected. More domains require more datasets with different
levels of noise, and the difference between the datasets with adjacent levels of noise is smaller.
When the difference gets too small, the network can no longer learn it effectively, resulting in
degraded performance. For our collected dataset, the optimal number of domains is three, and other
datasets may have a different optimal number of domains. How to effectively identify the optimal
number of domains for a given dataset can be an interesting problem worth further studying.
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(b) Images denoised by CCADN

(c) Images denoised by MCCAN without local cycles

(e) Images denoised by MCCAN

Fig. 5. (a) Original noisy CT images and the corresponding ones denoised by (b) CCADN[11], (c) MCCAN
without local cycles, (d) MCCAN without global cycles, and (e) MCCAN. (Best viewed in color.)
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(e) Images denoised by MCCAN

Fig. 6. (a) Original noisy CT images and the corresponding ones denoised by (b) CCADN[11], (c) MCCAN

without local cycles, (d) MCCAN without global cycles, and () MCCAN. (Best viewed in color.)
, Vol. 1, No. 1, Article . Publication date: January 2018.



12 X. Xu and J. Liu, et al.

X zZ Y zZ

Fig. 7. An image transformed through X—Z—Y—Z—X cycle in Fig. 3. The noise level decreases along
X—Z—Y and increases along Y—Z—X, which conforms to our design.

Table 2. Comparison of number of parameters (memory) and operations (computation) between the proposed
method and the state-of-the-art CCADN for inference. Note that there is one generator in CCADN, while
there are two in MCCAN. FLOP stands for floating point operation.

Method Number of parameters | FLOPs
CCADNI[32] 11.4M 745G
MCCAN w/o local cycles 11.0M 668G
MCCAN w/o global cycles 11.0M 668G
MCCAN 11.0M 668G

Table 3. Mean and SD of the selected areas in Fig. 5.

Original | CCADN[32] fACCAN w/o | MCCANw/o | oo a

ocal cycles | global cycles
Mean | SD | Mean | SD |Mean | SD | Mean | SD | Mean | SD
Area #1 | 1942.3 | 118.0 | 1801.2 | 100.2 | 30.9 45.2 | 1747.7 | 92.6 | 1712.8 | 89.8
Area #2 | 903.3 60.0 928.8 47.1 | 215.0 | 60.9 932.1 | 46.0 | 940.5 | 40.8
Area #3 | 913.6 | 58.1 938.2 | 46.0 96.7 41.2 | 9435 | 46.4 | 938.0 | 413
Area #4 | 1944.0 | 132.6 | 1821.5 | 103.8 | 43.8 55.6 | 1762.2 | 97.3 | 1723.5 | 94.5

Area #5 | 903.2 | 53.8 | 930.7 | 42.0 | 255.0 | 70.7 | 934.0 | 43.4 | 942.2 | 36.6

Method

4.3 Comparison with the State-of-the-art Method

4.3.1  Comparison of Resource Consumption. The comparison of number of parameters and float-
ing point operations (FLOPs) between the proposed method and the state-of-the-art CCADN in
inference is shown in Table 2. We can notice that the number of parameters and operations of
MMCAN is lightly less than that of CCADN, and MCCANSs with different configurations have the
same number of parameters and operations. This is because there are two generators with the same
network structure in inference for MCCANSs with different configurations. Note that, although
MCCAN without global cycles is supposed to have the same network architecture as MCCAN, there
is one extra discriminator associated with the intermediate domain Z. The reason for the extra
discriminator is that if there is only one discriminator associated with domain Z, the information
from both domain X and domain Y will help it to learn, which results in a stronger discriminator
than a discriminator with only one local cycle. That is, information from global scope, both domain
X and domain Y here, converges at the discriminator. Then the information would be propagated
to generators connected with the discriminator as well as whole networks. This is what we would
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Table 4. Mean and SD of the selected areas in Fig. 6.

Original ccapNpsz] | MECAN wio | MCCANw/o |y n 0\
local cycles global cycles
Mean | SD Mean SD |Mean| SD | Mean | SD | Mean | SD
Area #1 | 1067.2 | 24.8 | 1057.75 | 20.4 87.2 12.1 | 1058.5 | 20.58 | 1061.9 | 19.53
Area #2 | 1568.4 | 624 1498.4 60.6 47.9 22.6 | 1504.0 | 59.1 | 15479 | 54.8
Area #3 | 1052.9 | 344 1044.1 27.9 56.4 12.3 | 1044.8 | 28.0 | 1047.0 | 24.2
Area #4 | 906.6 43.2 942.6 37.7 | 120.1 | 25.7 930.7 334 897.1 30.9
Area #5 | 1082.2 | 66.11 | 1191.3 51.8 | 254.3 | 43.0 | 1165.5 | 50.7 | 1147.3 | 48.8
Area #6 | 1233.0 | 76.9 1398.2 654 | 176.0 | 56.3 | 1364.6 | 64.4 | 1367.7 | 63.6

Area #7 | 992.5 | 230.4 | 968.9 | 190.0 | 340.2 | 67.2 | 1010.3 | 188.8 | 995.8 | 178.3

Method

not want to see. Thus, two discriminators are utilized, and one for each local cycle to break the
global information communication.

4.3.2  Qualitative Evaluation. We choose six representative low-dose CT images in the test dataset
as shown in Fig. 5 and Fig. 6 for qualitative evaluation. The corresponding denoised images by
CCADN, MCCAN without local cycles, MCCAN without global cycles, and MCCAN are shown
in Fig. 5b-5e and 6b-6e respectively. From the figures we can see that CCADN can successfully
reduce noise in the original images. MCCAN without local cycles completely fails to produce
reasonable results. A close examination of the images reveal that interestingly the background and
the substances are approximately swapped compared with the original images. This is because the
high-level features of content distribution are still kept even with such swap, and the discriminator
cannot identify the generated image as “fake” because of the structure diversity in the training
dataset. This aligns with our discussion on the importance of local cycles in Section 2. We can take a
more closer comparison on the area indicated by yellow arrows in Fig. 5 and Fig. 6. We can observe
that compared with the original images and CCADN, only MCCAN can successfully remove the
tiny spot indicated by a yellow arrow in Fig. 5. In addition, MCCAN and MCCAN without global
cycles can remove the small hole in Fig. 6 which should not exist in the vessel. On the other hand,
MCCAN without global cycles can successfully denoise the image and achieves similar quality
compared with CCADN. This is expected as MCCAN without global cycles is essentially formed by
two cascaded CCADN:S. Finally, though MCCAN without local or cycles and the complete MCCAN
have competitive visual performance with each other, the complete MCCAN has a relatively smaller
noise (less spots, and more smooth boundary) visually.

To further illustrate the efficacy of the MCCAN structure, Fig. 7 shows how an image is
transformed along a global cycle (the path X—Z—Y—Z—X). From the figure we can see that
X — Z — Y is an effective two-step denoising process while Y — Z — X incrementally adds
noise back.

4.3.3 Quantitative Evaluation. The quantitative results are shown in Table 4. CCADN can reduce
the standard deviation in the 12 areas by 15%, 21%, 21%, 22%, 22%, 18%, 3%, 19%, 13%, 22%, 15%,
and 18%, respectively, with resulting mean values close to those of the original images. Although
MCCAN without local cycles achieves smallest standard deviation in Areas 1, 3 and 4, it leads to
large mean deviation from the original images, which corresponds to the structure loss in Fig. 5c.
MCCAN without global cycles has similar performance compared with CCADN, with mean values
close to original and standard deviation reduction by 22%, 23%, 20%, 27%, 19%, 17%, 5%, 19%, 23%,
23%, 16%, and 18%, respectively. Finally, the complete MCCAN behaves the best among all the
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methods. With mean values close to original, the standard deviations are decreased by 24%, 32%,
29%, 29%, 32%, 21%, 12%, 30%, 28%, 26%, 17%, and 23%, from the original CT images, respectively.

5 CONCLUSIONS

In this paper, we propose multi-cycle-consistent adversarial network (MCCAN) for edge denoising
of CT images. MCCAN builds intermediate domains and enforces both local and global cycle-
consistency. The global cycle-consistency couples all generators together to model the whole
denoising process, while the local cycle-consistency imposes effective supervision on the denoising
process between adjacent domains. Experiments show that both local and global cycle-consistency
are important for the success of MCCAN, and it outperforms the state-of-the-art competitor with
slightly less resource consumption. Our code is publicly available. Considering the practical usage,
the computation complexity and the denoising performance still need further improvement, and
our future work will focus on optimize the denoising performance while reducing the computation
operations at the same time. In the future work, we will try to apply MCCAN to other medical
images such as magnetic resonance imaging (MRI) and ultra sound images, and explore the cycle
design theoretically.
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