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Abstract—3D printing has been widely adopted for clinical
decision making and interventional planning of Congenital heart
disease (CHD), while whole heart and great vessel segmentation is
the most significant but time-consuming step in model generation
for 3D printing. While various automatic whole heart and great
vessel segmentation frameworks have been developed in the
literature, they are ineffective when applied to medical images
in CHD, which have significant variations in heart structure and
great vessel connections. To address the challenge, we leverage the
power of deep learning in processing regular structures and that
of graph algorithms in dealing with large variations, and propose
a framework that combines both for whole heart and great vessel
segmentation in CHD. Particularly, we first use deep learning to
segment the four chambers and myocardium followed by blood
pool, where variations are usually small. We then extract the
connection information and apply graph matching to determine
the categories of all the vessels. Experimental results using 68
3D CT images covering 14 types of CHD show that our method
can increase Dice score by 11.9% on average compared with
the state-of-the-art whole heart and great vessel segmentation
method in normal anatomy. The segmentation results are also
printed out using 3D printers for validation.

Index Terms Congenital eart isease, egmentation, eep
neural networks, raph matching

I. INTRODUCTION

Congenital heart disease (CHD) is the problem with the
hearts structure that is present at birth, which is the most
common cause of infant death due to birth defects [1]. It
usually comes with significant variations in heart structures
and great vessel connections, which makes it time-consuming,
tedious, and low-reproductivity to manually process (e.g., seg-
ment, diagnose, analyzed) 3D medical images. Recently, three-
dimensional (3D) printing has been widely adopted in clinic,
which is useful in clinical decision making, interventional
planning, facilitating communication between physicians and
patients, as well as enhancing medical education for a variety
of learners. However, the main step of model generation for
3D printing, whole heart and great vessels segmentation is
rather time-consuming and labor-intensive which takes an
experienced radiologist hours to produce only one 3D CHD
segmentation. Thus, considering the large quantity of medical
images and the increasing cost of medical expense [2] [3],
automatic whole heart and great vessel segmentation of heart
in CHD is emerging.

Recently, the development of deep learning [4] [6] has
improve the performance of segmentation [7] [9] including
whole hearts and great vessels segmentation by a large margin.
One approach is about multi-modality whole heart segmenta-
tion [10] which deals with seven substructures within normal
heart anatomy. There are tens of works [11] [13] in this
approach, and the state-of-the-art performance is obtained by
[12] which combines 3D U-net [14] for segmentation and a
simple convolutional neural network for label position predic-
tion. Another approach is about blood pool segmentation in
CHD which only handles the blood pool and myocardium [15]
[16]. There are also some works leveraging user interaction
for accurate segmentation. For example, Danielle et al. [17]
adopted iterative segmentation for left ventricle (LV) and aorta
segmentation in CHD, which required user interaction to locate
an initial seed for segmentation. Considering the significant
variations in heart structures and great vessel connections
in CHD, almost all the existing methods cannot effectively
perform whole heart and great vessels segmentation in CHD.

Inspired by the success of graph matching in a number
of applications with large variations [18], in this paper we
propose to combine deep learning and graph matching for
fully automated whole heart and great vessel segmentation in
CHD. Particularly, we leverage deep learning to segment the
four chambers and myocardium followed by blood pool, where
variations are usually small and accuracy can be high. We
then extract the vessel connection information and apply graph
matching to determine the categories of all the vessels. We
collected 68 CT images with 14 types of CHD for experiment.
Compared with the state-of-the-art method for whole heart and
great vessel segmentation in normal anatomy, our method can
achieve 11.9% higher Dice score. We further print out the
segmentation results on 3D printers for validation.

II. BACKGROUND

Within normal heart anatomy as shown in Fig. 1(a), there
are usually seven substructures: left ventricle (LV), right ven-
tricle (RV), left atrium (LA), right atrium (RA), myocardium
(Myo), faorta (Ao) and pulmonary artery (PA). Note that the
area including RA, LA, LV, RV, PA, and Ao is defined as
blood pool. However, CHD usually suffers from significant
variations in heart structure and great vessel connections.
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Fig 1. Examples of large structure variations in CHD. In normal heart anatomy (a), PA is connected to RV. However, in pulmonary atresia (b), PA is
rather small and connected to descending Ao. In common arterial trunk (c), Ao is connected to both RV and LV, and PA is connected to Ao.
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Fig 2. Pulmonary atresia and common arterial trunk examples in our dataset, with large variations from normal heart anatomy.

TABLE I THE TYPES OF CHD IN OUR DATASET AND THE ASSOCIATED NUMBER OF IMAGES. SOME IMAGES MAY CORRESPOND TO MORE THAN ONE TYPE
OF CHD

Common CHD Less Common CHD
ASD AVSD VSD FoV PDA TGA CA PS PAS AD CAT AAA SV PuA
17 4 26 7 7 4 4 4 3 20 4 8 2 7

Eight common types of CHD [1] include: atrial septal defect
(ASD), atrio-ventricular septal defect (AVSD), patent ductus
arteriosus (PDA), pulmonary stenosis (PS), ventricular septal
defect (VSD), co-arctation (CA), Tetrology of Fallot (ToF),
and transposition of great arteries (TGA). Fig. 1(b)(c) shows
two less common types with larger variations, where we
can notice that PA is connected to Ao rather than RV. As
existing methods perform pixel-wise classification based on
the surrounding pixels in the receptive field, the disappeared
main trunk of PA renders them ineffective.

III. DATASET

Our dataset consists of 68 3D CT images captured by
a Simens biograph 64 machine. The ages of the associated
patients range from 1 month to 21 years, with majority
between 1 month and 2 years. The size of the images
is 512 × 512×(130−340), and the typical voxel size is
0.25×0.25×0.5mm3. The dataset covers 14 types of CHD
(out of 16 total [1]), which include the eight common types
discussed in Section II plus six less common ones (pulmonary
artery sling (PAS), anomalous drainage (AD), common arterial
trunk (CAT), aortic arch anomalies (AAA), single ventricle
(SV), pulmonary atresia (PuA)). The number of images as-
sociated with each is summarized in Table I. All labeling
were performed by experienced radiologists, and the time
for labeling each image is 1-1.5 hours. The labels include

seven substructures: LV, RV, LA, RA, Myo, Ao and PA.
For easy processing, venae cavae (VC) and pulmonary vein
(PV) are also labeled as part of RA and LA respectively, as
they are connected and their boundaries are relatively hard to
define. Anomalous vessels are also labeled as one of the above
seven substructures based on their connections. Fig. 2 shows
3D views of some examples in our dataset with significant
structure variations.

IV. METHOD

A. Framework Overview

The overall framework is shown in Fig. 3. Region of
interest (RoI) cropping extracts the area that includes the
heart and its surrounding vessels. We resize the input image
to a low resolution of 64×64×64, and then adopt the same
segmentation-based extraction as [12] to get the RoI. Cham-
bers and myocardium segmentation resizes the extracted
RoI to 64×64×64 which is fed to a 3D U-net for segmenta-
tion. Blood pool segmentation is conducted on each 2D slice
of the input using a 2D U-net with an input size of 512×512.
Note that in order to detect the blood pool boundary for easy
graph extraction in graph matching later, we add another class
blood pool boundary in the segmentation. Chambers and
myocardium refinement refines the boundaries of chambers
and myocardium based on the outputs of chambers and my-
ocardium segmentation and blood pool segmentation. Graph
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Fig 3. Overview of the proposed framework combining deep learning and graph matching for whole heart and great vessel segmentation in CHD.

TABLE II MEAN AND STANDARD DEVIATION OF DICE SCORE OF THE STATE-OF-THE-ART METHOD SEG-CNN [12] AND OUR METHOD (IN %) FOR 14
TYPES OF CHD IN WHOLE HEART AND GREAT VESSEL SEGMENTATION

Method Common CHD Less Common CHD
ASD AVSD VSD FoV PDA TGA CA PS PAS AD CAT AAA SV PuA

Seg-CNN [12] 66.4 70.1 67.3 68.7 71.4 61.0 66.1 65.9 65.9 66.7 61.0 66.3 62.6 66.3
with Std ±4.6 ±3.2 ±4.7 ±1.4 ±2.6 ±13.3 ±3.3 ±4.5 ±9.9 ±5.0 ±4.1 ±5.0 ±8.4 ±6.0

Our method 78.5 83.1 77.6 82.1 82.8 77.1 79.2 75.9 78.9 78.4 75.6 77.8 74.3 71.8
with Std ±4.1 ±4.5 ±8.5 ±2.4 ±3.8 ±7.0 ±4.2 ±4.0 ±3.8 ±5.4 ±8.8 ±5.1 ±3.3 ±11.8

matching identifies great vessels and anomalous vessels using
the outputs of blood pool segmentation and chambers and
myocardium segmentation.

V. EXPERIMENTS

A. Experiment Setup

All the experiments run on a Nvidia GTX 1080Ti GPU with
11GB memory. We implement our 3D U-net using Pytorch
based on [12]. For 2D U-net, most configurations remain the
same with those of the 3D U-net except that 2D U-net adopts 5
levels and the number of filters in the initial level is 16. Both
Dice loss and cross entropy loss are used, and the training
epochs are 6 and 480 for 2D U-net and 3D U-net, respectively.
Data augmentation is also adopted with the same configuration
as in [12] for 3D U-net. Data normalization is the same as
[12]. The learning rate is 0.0002 for the first 50% epochs,
and then 0.00002 afterward. We adopt Seg-CNN [12] that
achieves the state-of-the-art performance in normal anatomy
whole heart and great vessel segmentation for comparison. The
configuration is the same as that in [12].

For both methods, four-fold cross validation is performed
(17 images for testing and 51 images for training). The split
of our dataset considers the structures of CHD so that any
structure in the testing dataset also has a similar presence in
the training dataset, though they may be not of the same type
of CHD. Segmentation accuracy is evaluated using Dice which
is defined as X∩Y/(|X|+|Y |) (X and Y are the segmentation
result and ground truth respectively). We finally print out part
of the segmentation results on a commercial 3D printer Sailner
J501Pro for validation. It usually takes 3-4 hours to print a
model (segmentation result) of children hearts.

B. Results and Analysis

The comparison with Seg-CNN [12] is shown in Table II.
Our method can get 5.5%-16.1% higher mean Dice score
across the 14 types of CHD. (11.9% higher on average). The

highest improvement is achieved in TGA, which is due to
the fact that both Ao and PA are with normal structures. The
least improvement is obtained in PuA, which is due to the
fact that PuA is with serious variation on the structure and
connection of PA. Both Seg-CNN and our method obtain a
slightly higher accuracy on common CHD than less common
CHD. Our method achieves a similar standard deviation of
Dice score in common CHD and less common CHD compared
with Seg-CNN [12].

Visualization of CAT segmentation using our method and
Seg-CNN is shown in Fig. 4. Our method can clearly segment
Ao and PA with some slight mis-segmentation between PA and
LA. However, Seg-CNN segments the main part of Ao as PA,
which is due to the fact that pixel-level segmentation by U-net
is only based on the surrounding pixels, and the connection
information is not well exploited.

Examples of 3D printing models using our method with
some minor manual refinement are shown in Fig. 5. We can
notice that the printed model is with correct and clear shape
and connections, and experienced radiologists have confirmed
its usability to clinic use. Note that the refinement is mainly
about adding some thin but critical vessels such as coronary
vessels.

VI. CONCLUSION

In this paper we proposed a whole heart and great ves-
sel segmentation framework for 3D printing of CT images
in CHD. We first used deep learning to segment the four
chambers and myocardium followed by blood pool, where
variations are usually small. We then extracted the connec-
tion information and apply graph matching to determine the
categories of all the vessels. We collected a CHD dataset in CT
with 68 3D images, and the ground truth has seven categories:
LV, RV, LA, RA, myocardium, Ao and PA. Totally 14 types
of CHD are included in this dataset which is made publicly
available. Compared with the state-of-the-art method for whole
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(a) Ground truth with CAT (b) Our method with CAT (c) Seg-CNN with CAT
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Fig 4. Visualized comparison between the state-of-the-art method Seg-CNN [12] and our method. The differences from the ground truth are highlighted
by the red circles.
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Fig 5. Examples of 3D printing models using our method with some minor manual refinement.

heart and great vessel segmentation in normal anatomy, our
method can achieve 11.9% improvement in Dice score on
average. We also printed out part of the segmentation results
with minor manual refinement, and showed that it can be
applied to clinic use.
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