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Abstract

State-of-the-art deep learning based methods have achieved remarkable performance on
medical image segmentation. Their applications in the clinical setting are, however, lim-
ited due to the lack of trustworthiness and reliability. Selective image segmentation has
been proposed to address this issue by letting a DNN model process instances with high
confidence while referring difficult ones with high uncertainty to experienced radiologists.
As such, the model performance is only affected by the predictions on the high confidence
subset rather than the whole dataset. Existing selective segmentation methods, however,
ignore this unique property of selective segmentation and train their DNN models by op-
timizing accuracy on the entire dataset. Motivated by such a discrepancy, we present a
novel method in this paper that considers such uncertainty in the training process to max-
imize the accuracy on the confident subset rather than the accuracy on the whole dataset.
Experimental results using the whole heart and great vessel segmentation and gland seg-
mentation show that such a training scheme can significantly improve the performance of
selective segmentation.
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1. Introduction

Deep neural networks (DNNs) have greatly reduced human efforts needed to segment med-
ical images. However, their adoption in clinical procedures is relatively slow. One of the
foremost reasons is the lack of trustworthiness and reliability, which is critical for medical
applications. Given DNN models’ fundamental dependency on sufficient annotated samples
and poor generalization on unseen data (Wang et al., 2018a), it is hard to expect that they
alone can provide trusted and reliable segmentation in the near future (Joskowicz et al.,
2019). A much more likely path forward is to rely on human-machine cooperation such
that DNN models process easy instances in a confident and reliable manner and refer dif-
ficult ones with uncertainty to experienced radiologists, which is also known as selective
segmentation (Nair et al., 2018; Sander et al., 2019).

c© 2020 Y.D. , J.L. , X. Xu, M. Huang, J. Zhuang, J. Xiong & Y. Shi.



Uncertainty-Aware Training for Selective Segmentation

(a) Process of selective segmentation (b) The training target and practical target

Figure 1: Concept illustration of selective segmentation.

The process of selective segmentation is shown in Figure 1(a). The DNN model will
process the input image first. Instead of letting the model segment the whole image re-
gardless of the difficulty of instances, the model will selectively segment part of the input
image, on which it is confident to make decisions (i.e. a confident subset of all inputs). The
remaining part will be highlighted as unsegmented which is the white area in Figure 1(a)
and referred to radiologists to complete the final segmentation. The coverage of the model
is defined as the percentage of the segmented area by the model accordingly.

The accuracy of DNN models in the context of selective segmentation should be eval-
uated differently compared with the conventional segmentation. For conventional segmen-
tation, a model makes predictions on all data and the training target is maximizing the
accuracy on all instances in the training set. In contrast, for selective segmentation, what
will be used in the inference stage is only the confident subset of instances, where the model
makes confident predictions. This means that the practical target is no longer maximizing
the segmentation accuracy over the entire inputs but rather on a subset, which is to be de-
termined. An illustration is shown in Figure 1(b). Therefore, it is sub-optimal to still train
the model with the same objective functions as in normal segmentation tasks. However,
while all existing neural network-based methods differ in the way they extract and process
the information from the network, they are trained with conventional objective functions
designed for the conventional accuracy measure on the entire training set (Nair et al., 2018;
Sander et al., 2019), leading to a gap between the training target and the practical target.
A detailed review of related work is provided in Appendix A.

We narrow this gap by developing a new method for selective segmentation that considers
the joint effect of uncertainty estimation and prediction to directly optimize for the practical
target in the training process. More importantly, we show that the practical target can be
connected to the training target by a novel uncertainty target. This enables us to transform
the optimization for the training target to optimization for the practical target by adding
an uncertainty loss term that accounts for the uncertainty target in the final loss function.
This is powerful as it does not require any special network architecture and is universally
applicable to all existing DNN models with little implementation effort. As such, our method
can be easily adopted in a plug-and-play manner to most segmentation frameworks and
enjoy all the benefits of new techniques for general segmentation tasks. Experimental results
show that, our method significantly improves the selective segmentation performance. To
the best of our knowledge, this is the first work that considers uncertainty in the training
process for selective segmentation.
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2. Method

In this section, we first formally define the selective image segmentation problem. Then
we introduce our key observation and present a novel uncertainty estimation target that
connect the practical target and the training target. Finally we discuss the application of
the proposed objective in uncertainty-aware training and the computation overhead.

2.1. Problem Setting

Without any assumption on how the quantified uncertainty score is obtained (where various
methods exist and can be applied), for each instance xi ∈ X (pixel or voxel in the case of
2D and 3D medical images, respectively), a model f produces the predicted class ŷi ∈ Ŷ
and a quantified uncertainty scalar ui ∈ U as:

Ŷ , U = f(X) (1)

The correctness score si = 1 if yi = ŷi, and si = 0 if yi 6= ŷi, where yi ∈ Y is the
ground truth label of xi. Note that Ŷ is not necessarily the same as Y . We further define
Uw = {ui|si = 0} and Uc = {ui|si = 1} as the sets of uncertainties of wrong predictions and
correct predictions, respectively.

When a threshold t is applied to the uncertainty measure ui, it splits instances into
two sets as Xl = {xi|ui ≤ t} (with the corresponding Ŷl = {ŷi|ui ≤ t}) and Xh = X −Xl

(with the corresponding Ŷh = Ŷ − Ŷl), where we use minus to represent the set subtraction
operation. For selective segmentation inference, instances in Xl will be segmented by the
DNN model with label Ŷl, while instances in Xh will be referred to radiologists for manual
segmentation.

The coverage of a DNN model with threshold t is defined as c = |Xl|
|X| . We denote ψc as

the instance-wise accuracy at a coverage c: ψc =

∑
xi∈Xl

si

|Xl| . When c = 1, Xl = X and we

have ψ1 =

∑
xi∈X si

|X| . For any given DNN model, ψc and c define an accuracy-coverage curve
by varying c.

In practice, ψc has an increasing trend with decreasing c. The specific practical oper-
ating point {c, ψc} on the accuracy-coverage curve can be chosen by radiologists as needed
for a desired trade-off between accuracy and coverage. For example, for critical tasks, c
can be selected such that ψc is higher than a pre-defined accuracy threshold. Statistical
methods can be used to guarantee the desired accuracy with high probability on unseen
data (Geifman and El-Yaniv, 2017). Clearly, ψ1 is the training target which is the aim of
training algorithm in all existing work (Nair et al., 2018; Sander et al., 2019), while ψc is
the pactical target that actually determines the performance of the model in a selective
segmentation system.

2.2. The Uncertainty Target

While we are clear about the practical target ψc, it is unclear how to directly optimize ψc.
The actual performance of selective segmentation ψc, is a combined result of the normal
segmentation result and uncertainty estimation. For any fixed segmentation results, the
performance of selective segmentation (i.e. ψc) is maximized if we have a perfect uncertainty
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estimation. However, while the optimization for segmentation performance is well-studied,
that for uncertainty estimation is not clear.

The optimization for uncertainty estimation rely on an objective function which can
be analyzed in the framework of scoring rule (Gneiting and Raftery, 2007; Jolliffe and
Stephenson, 2012), which provides an attractive property for optimization problems. A
scoring rule is defined as a quantified summary measure for the quality of probabilistic
predictions. Denote the true distribution as q and the distribution predicted by a model
parameterized by θ is pθ. A scoring rule h is a proper scoring rule if h(pθ, q) ≤ h(q, q)
for all pθ and q. Additionally, h is a strictly proper scoring rule if h(pθ, q) ≤ h(q, q) with
equality if and only if pθ = q. A proper scoring rule can be used as a loss function to find
arg maxθ h(pθ, q).

The uncertainty estimation can be considered as such a probabilistic prediction prob-
lem. For general uncertainty estimation of neural networks (DeVries and Taylor, 2018a;
Hendrycks and Gimpel, 2016; Lakshminarayanan et al., 2017), the normalized uncertainty
estimation ui ∈ [0, 1] is expected to be the probability of the prediction being wrong and
1 − ui is the probability of the prediction being correct. Then there is a ground truth
distribution q to be approximated. It is shown that some commonly used loss functions
such as the softmax cross-entropy and Brier score are strictly proper scoring rule (Laksh-
minarayanan et al., 2017). In other words, a model trained with softmax cross-entropy or
Brier score are encouraged to recover the true uncertainty distribution q. This is why the
maximum softmax (Hendrycks and Gimpel, 2016) can be a good uncertainty estimation for
DNNs.

In selective segmentation, we determine whether a instance is high-uncertainty or low-
uncertainty based on a variable threshold t. For given prediction Ŷ and coverage c, the
model performance ψc is only affected by the relative ranking of correction prediction and
wrong predictions. As such, what we only need is that wrong predictions are assigned
with higher uncertainty than correct predictions, rather than having correct predictions be
assigned with ui = 1 and having wrong predictions be assigned with ui = 0.

Observation: For the uncertainty estimation in selective segmentation, we do not need
a strictly proper scoring rule that tries to recover the actual distribution q.

Motivated by such a key observation, we look into a measure of uncertainty estimation
quality specialized for selective segmentation and denoted by γ. The following theorem
summarizes the desired property of γ, which facilitates the optimization for ψc and justifies
our choice. The proof is given in Appendix B.

Theorem 1 Denote γ =

∑
xi∈Xh

(1−si)
|Xh| , then we have the following properties about ψc, ψ1,

and γ for c ∈ (0, 1]:
(i) γ is a proper scoring rule but not a strictly proper scoring rule for uncertainty esti-

mation.
(ii) ψc = ψ1−(1−γ)(1−c)

c , s.t. (1− γ)(1− c) ∈ [ψ1 − c, ψ1].

(iii) ∂ψc

∂γ > 0 and ∂ψc

∂ψ1
> 0 for any γ and c.

Specifically, γ denotes the proportion of wrongly predicted instances among those in-
stances referred to radiologists for any coverage c. Now we discuss why these properties are
important.
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For property (i), as a proper scoring rule, γ has the advantage that it minimizes potential
conflict with the optimization for ψ1. For example, when maximum softmax probability is
used for uncertainty estimation, the uncertainty estimation shares the same output with the
normal prediction for every instance. A scoring rule that prefers bad distribution prediction
could impede the optimization for ψ1 heavily as ψ1 relies on the approximation of q by
pθ. As a non-strictly proper scoring rule, it avoids the redundant objective of recovering
the true uncertainty distribution q. Specifically, in order to maximize ψc, we only need
to maximize γ which is an easier task compared with recovering the true distribution q.
Directly maximizing γ instead of focusing on qθ gives the model more flexibility. As a
result, we can expect a higher γ and then a higher ψc.

From property (ii), we can see that for any coverage c, ψc is fully determined by ψ1

and γ. For property (iii), because the partial derivatives of ψc with respect to ψ and
γ are always positive, maximizing γ or maximizing ψ1 leads to maximized ψc given that
the other is not affected. By relaxing the assumption that the other is fixed, we can see
that the key to the optimal ψc is finding a good trade-off between ψ1 and γ. Therefore,
we propose to maximize γ and ψ1 simultaneously in order to maximize ψc. Compared to
other possible formulations, the key advantage of this decomposition is that we are making
minimal modification to the conventional optimization method. Therefore, our method is
generally applicable and able to leverage any existing techniques for optimizing the training
target ψ1 which is important in the application of selective segmentation.

2.3. Uncertainty-Aware Training

The discussion above has shown that γ is indeed an excellent objective for uncertainty
estimation in selective segmentation. However, γ is discontinuous and does not provide
any useful gradients for the parameters in a neural network. It makes it difficult to use
γ in the practical model training process. Therefore, we introduce an uncertainty loss as
a differentiable proxy to γ. Specifically, we minimize the following uncertainty loss in the
training process,

Luncertainty =
∑

uj∈Uw,uk∈Uc

max(uk − uj +m, 0), (2)

where m is a hyper-parameter that denotes the desired margin to separate Uw and Uc.
Luncertainty resembles a margin ranking loss that tries to assign all incorrect prediction with
higher uncertainty than all correct predictions i.e. ranking all incorrect predictions higher
than correct predictions.

Formally, when m = 0, γ is maximized over c ∈ (0, 1] if and only if Luncertainty is
minimized. In order to improve the generalization, a small margin m is used to further
separate Uw and Uc, which makes minimized Luncertainty a sufficient but not a necessary
condition for maximized γ. Besides, considering the average value of γ when c ∈ (0, 1], a
wrong prediction with lower uncertainty has a higher impact than a wrong prediction with
higher uncertainty. This effect is consistent with that in Luncertainty.

It is important to note that Luncertainty is just an simple but practical approximation to
γ. It is possible to find better optimization proxy and we leave this for future work. As for
ψ1, it can be maximized by any conventional training objective functions which is out of the
scope of this paper. In order to maximize the overall selective segmentation performance
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which is ψc for undetermined c, we combine the two objectives by a weight λ to find a good
trade-off between γ and ψ. The final objective function is given by

Lu-seg = Lsegmentation + λLuncertainty. (3)

As we discussed above, the existing segmentation techniques on improving the training
target is sub-optimal in the selective segmentation scenario becausee of the gap between
training target and practical target. The proposed method works as a simple yet effective
remedy to bridge the gap. We remark that the analysis works for general problems and our
method is orthogonal to most state-of-the-art segmentation methods regardless of specific
training methods or network architecture. When adopting the uncertainty-aware training
scheme to existing segmentation framework, we can directly replace the original loss function
Lsegmentation with Lu-seg and run the whole pipeline normally.

Same as the standard stochastic gradient descent, we evaluate and optimize Luncertainty
on each batch. The computation complexity for Luncertainty is O(n2), where n is the number
of instances in each batch. For image segmentation, each pixel/voxel is an instance and thus
the total number of instances in each batch is fairly big especially on volume data which
slows down the training significantly. Therefore, we apply random subsampling to reduce
the computation cost. As will be shown in the experimental results, satisfactory accuracy
can be achieved with a relatively small sample size.

It is tempting to try a two-stage training scheme to further reduce the overhead. Specif-
ically, one can divide the original training process into two stages. In the first stage, the
network is trained with Lsegmentation only. After a certain number of epochs we start the
second stage where Lu-seg is used. If the model can adapt from the target Lsegmentation to
the other target Lu-seg quickly, we can get similar performance with a lower computation
cost. However, in the experiment we find that such assumption is not valid. Detailed results
are shown in Appendix D.

3. Experiments and Results

3.1. Experiments Setup

We first evaluate our proposed method on the Multi-Modality Whole Heart Segmentation
(MM-WHS) dataset (Zhuang et al., 2019) with popular backbone network 3D U-Net (Çiçek
et al., 2016; Ronneberger et al., 2015). In order to show that the superiority of our method is
independent of the power of the network itself, we further validate it on a more challenging
dataset from Gland Segmentation Challenge Contest (GlaS) (Sirinukunwattana et al., 2017)
using a relatively weak network structure (Ronneberger et al., 2015). We apply uncertainty-
aware training with the maximum softmax probability (DeVries and Taylor, 2018b) and the
method without our uncertainty loss is the baseline method. More details of the experiments
are given in Appendix C. Our code is available at https://github.com/yding5/Uncertainty-
aware-training.

3.2. Results

There are a few hyper-parameters in the methods which can be chosen by a simple grid
search. The effect of these hyper-parameters is investigated in Appendix D. The main
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results are shown in Table 1. In order to have a quantified metric to evaluate the overall
comparisons for the performance of selective segmentation, we use the Area Under Risk-
Coverage curve (AURC) following (Ding et al., 2019; Geifman and El-Yaniv, 2017). The
Risk-Coverage curve shows the change of Risk with coverage where the Risk is defined as
the instance-wise error rate in the image classification scenario. In this paper we compute
the risk as 1−Dice to adapt it for segmentation. We also show the distribution of the Dice
across all the test images for representative coverage values. From the table we can see that
our method consistently improves the AURC and Dice by a significant margin (the mean
Dice is increased and the standard deviation is reduced). We also compare the Dice at the
5th percentile of the distribution, which shows that our method can also effectively improve
the Dice in most worst cases. We provide detailed image-by-image comparison analysis and
the qualitative results below.

Table 1: Quantitative comparison between baseline and our method in terms of AURC (%)
mean and standard deviation of Dice across all test images, and Dice at the 5th
percentile (5PCTL).

Dataset
AURC (%)

Coverage
Dice (%) Dice@5PCTL (%)

Baseline Ours Baseline Ours Baseline Ours

MM-WHS 0.936 0.810

0.95 93.86±3.66 94.72±2.53 83.18 89.19
0.90 96.73±2.30 97.35±1.54 90.55 94.64
0.80 98.98±0.79 99.21±0.61 97.42 98.11
0.70 99.64±0.31 99.72±0.31 98.98 99.07

GlaS 6.981 6.031

0.95 78.62±16.87 80.80±16.48 35.99 39.16
0.90 82.14±14.53 84.26±13.87 49.77 52.46
0.80 87.54±12.31 89.37±11.24 66.63 67.90
0.70 91.45±10.86 92.92±9.55 75.95 74.81

Per-image Comparison. We plot the per-image comparison between the baseline and
our method under different coverage c on MM-WHS in Figure 2. For every input image
we compute its coverage c1 and Dice d1 with baseline method and coverage c2 and Dice d2
with our method. The x-axis is the coverage difference c2 − c1 and the y-axis is the Dice
difference d2−d1. Note that the c in the caption is the average coverage of all images while
each dot represents a specific image with its corresponding coverage and Dice.

The dots in the first quadrant mean our method provides both higher coverage and
higher Dice. The dots in the third quadrant mean the opposite. The numbers in the figure
indicate the percentages of dots in the corresponding quadrants. The number of dots on
the left side of y-axis is approximately the same as that on the right side. This is because
the two methods have the same average coverage. On the other hand, the number of dots
above the x-axis is significantly more than that below the x-axis. The reason is that our
algorithm improves the Dice for most images.
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(a) c=0.95 (b) c=0.9 (c) c=0.8 (d) c=0.7

Figure 2: Per-image comparison of Dice and coverage difference under different coverage on
MM-WHS.

(a) MM-WHS (b) GlaS

Figure 3: Dice-Coverage curves.

Moreover, the dots in the first quadrant is consistently more than the dots in the third
quadrant, which means that our method gets more samples with both higher coverage
and accuracy than samples with both lower coverage and lower accuracy. Comparing the
results under different coverage, we can see that the Dice difference decreases and the
coverage difference increases along with reduced coverage. More results on GlaS are given
in Appendix E due to space limitation where we make the same observations. The dots are
more sparse for GlaS because of the smaller number of images and higher difficulty of this
dataset compared to MM-WHS.

Dice-Coverage curve. In order to visualize the overall increased segmentation perfor-
mance along with more referred instances, we plot Dice-Coverage curves in Figure 3. For
MM-WHS, we plot the results of 5-fold cross-validation. For GlaS, we plot the results on the
test dataset which has two parts (Sirinukunwattana et al., 2017). In general, our method
has equivalent or slightly higher Dice at the full coverage (c = 1) compared with the baseline
due to the regularization effect of the new loss function which does not penalize heavily for
the low confidence wrong prediction. The curves converge when c is too small because it
becomes too easy to exclude wrong predictions and thus not shown in the figure. Mean-
while, we observe a clear improvement over a wide range of c. We did additional analysis
in Appendix F to validate that the model benefits from better uncertainty estimation.

Qualitative Results. The qualitative results are shown in Figure 4 where we show
representative slices in the region of interest. When the coverage c is 1 that is the normal case
for which the baseline is optimized, our method produces similar segmentation results. The
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Figure 4: Qualitative comparison with the baseline on MM-WHS. For the error figure, blue
means correct segmentation while yellow indicates segmentation error.
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original uncertainty map resembles the segmentation boundary because of the ambiguous
boundary and the inter-observer variability (Joskowicz et al., 2019; Jungo et al., 2018).
Compared to the baseline model, our model’s uncertainty map shows more regions with
visible uncertainty. The reason is that our training objective penalizes the over-confidence
prediction and results in a relatively uniform confidence distribution.

Note that a more uniform distribution does not mean better uncertainty estimation for
selective prediction. Only a better ranking of uncertainty leads to better performance when
c < 1. Besides, it can be seen that the segmentation error at the coverage of 0.9 is greatly
reduced compared with c = 1 which is the main benefit of selective segmentation.

4. Conclusions

In this paper, we develop the first uncertainty-aware training method of neural networks for
selective medical image segmentation. Our key observation is that, in a selective segmen-
tation scenario, the practical target is different from the conventional training target that
existing training algorithms are designed for. Motivated by this observation, we proposed
an uncertainty-aware training technique that considers uncertainty in the training process
to directly maximize the selective segmentation performance in practice, thus closing the
gap between the training target and the practical target in existing methods. The proposed
method can be easily adopted into existing frameworks in a plug-and-play manner. Exper-
imental results using whole heart and great vessel segmentation and gland segmentation
show that such a training scheme can significantly improve the performance of selective
segmentation.
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Appendix A. Related Work

A.1. Uncertainty estimation

There are different ways for the uncertainty estimation of DNNs. A conventional one is
approximating Bayesian neural networks by Monte Carlo dropout at inference time (Nair
et al., 2018; Shi et al., 2018). Motivated by an interpretation of dropout as ensemble model
combination, the use of ensemble for uncertainty estimation is also investigated (Laksh-
minarayanan et al., 2017; Geifman et al., 2018). In practice, the most popular approach
is maximum softmax probability (Hendrycks and Gimpel, 2016), a free by-product of any
models that generate probabilities of different classes by a softmax layer. A number of
alternative estimation approaches are proposed recently to improve the estimation qual-
ity with various assumptions and trade-offs (Chen et al., 2018; Malinin and Gales, 2018;
Mandelbaum and Weinshall, 2017). In this work, we use the maximum softmax probabil-
ity because it is popular, simple to implement, and does not incur much overhead. It is
possible to use other uncertainty estimation approaches but it might introduce additional
implementation difficulties. For example, the back-propagation for uncertainty loss requires
that all forward passes of the Monte Carlo dropout are done. This will drastically increase
the memory consumption to save the intermediate results of each pass.

The general idea of uncertainty-aware training is explored for image classification in
(Geifman and El-Yaniv, 2019). The SelectiveNet in (Geifman and El-Yaniv, 2019) adds
a selection head and an auxiliary head to the network and uses a weighted sum of loss
terms to train the networks for a specific coverage. In addition to the different problem
settings, our method differs a few ways. Firstly, we avoid training a new head after the
deconv layer to do a regression task on all instances. Secondly, SelectiveNet is optimized for
a specific coverage and will need to switch to different models for different target coverage.
In contrast, we train a unified model that is optimized for overall performance that can
be used across all target coverage and the specific coverage in the inference stage can be
adjusted smoothly in real-time. (Kumar et al., 2018) proposes a differentiable proxy for the
calibration error and optimizes it in the training process. However, the calibration error has
fundamental differences with the selective prediction and thus does not imply any benefit
to selective segmentation (Ding et al., 2019).

A.2. Selective segmentation

In selective segmentation for medical images, the referred part can be manually annotated
by radiologists or be re-segmented by a DNN based on radiologists’ feedback such as scrib-
bles (Wang et al., 2018b). Both of them benefit from a better training objective that suits
the nature of selective prediction, which is the focus in this paper. Selective segmentation
is closely related to interactive segmentation (Acuna et al., 2018; Xu et al., 2016) but has
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distinct objectives. Interactive segmentation is typically done by having a human annota-
tor to check the segmentation results and refining the segmentation based on the human
annotator’s feedback. The previous research focuses on maximizing the performance of the
proposed segmentation and minimizing the required interaction (Benenson et al., 2019; Li
et al., 2018). Meanwhile, selective segmentation aims to confidently segment a subset of the
input without the need of manually checking which would be time-consuming for medical
images, especially for 3D input. For the difficult or ambiguous instances, interactive seg-
mentation tries to segment them correctly based on the iterative human annotations while
selective segmentation aims to isolate them from the rest.

Selective segmentation belongs to uncertainty-aware referral for general problems. In
the context of DNNs, uncertainty-aware referral is applied to natural image classification
(Geifman and El-Yaniv, 2017), disease detection (Leibig et al., 2017) and most recently,
medical image segmentation (Eaton-Rosen et al., 2018; Nair et al., 2019; Sander et al.,
2019). However, all the existing work directly uses the standard model training algorithm
which has not considered the discrepancy between the training target and the practical
target.

Appendix B. Proof of Theorem 1

Proof From the definition of γ, we see that, γ is maximized for any c ∈ (0, 1] as long as each
wrong prediction has higher uncertainty than any correction predictions i.e. uj > uk for
∀uj ∈ Uw, uk ∈ Uc. Now consider γ as a scoring rule to measure the quality of uncertainty
estimation qθ towards the ground truth q. If pθ = q, we have uj = 1 for uj ∈ Uw and uk = 0
for uk ∈ Uc which leads to maximized γ. On the other hand, consider a case that uj = 0.6
for uj ∈ Uw and uk = 0.4 for uk ∈ Uc, we have pθ 6= q but γ is still maximized. As a result,
γ is a proper scoring rule but not a strictly proper scoring rule for uncertainty estimation.
Property (i) is proved.

Here we prove the Property (ii) by verification for clarity. With γ and c, we first divide
all samples into the following four cases (1) xi ∈ Xl, si = 0; (2) xi ∈ Xh, si = 0; (3)
xi ∈ Xl, si = 1; (4) xi ∈ Xh, si = 1. For simplicity, we denote the number of instances of
these four cases as N1, N2, N3, N4 respectively. Then we can easily define ψc, ψ1, γ, and c
as follows.

ψc =
N3

N1 +N3
(4)

ψ1 =
N3 +N4

N1 +N2 +N3 +N4
(5)

c =
N1 +N3

N1 +N2 +N3 +N4
(6)

γ =
N2

N2 +N4
(7)
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By inserting Equation (5 6 7), we have

ψ1 − (1− γ)(1− c)
c

=
N3+N4

N1+N2+N3+N4
− N4

N2+N4

N2+N4
N1+N2+N3+N4

N1+N3
N1+N2+N3+N4

(8)

=
N3

N1 +N3

=ψc

γ has the constraint that the number of correct prediction and the number of wrong
predictions in Xh can not exceed the number of correct prediction and the number of wrong
predictions in X respectively. Formally:

(1− γ)(1− c) ≤ ψ1 (9)

γ(1− c) ≥ 1− ψ1 (10)

With simple rearrangement we get the constraint (1 − γ)(1 − c) ∈ [ψ1 − c, ψ1]. Therefore,
property (ii) is proved.

For the property (iii), we have ∂ψc

∂γ = γ(1−c)
c > 0 and ∂ψc

∂ψ1
= 1

c > 0.

Appendix C. Implementation Details

The MM-WHS dataset contains 20 CT volumes in the training set. The inputs are 3D
patches in the size of 64×64×64. The average results of 5-fold cross-validation is reported.
The patch used for GlaS is 192×192. The test dataset is divided into Part A and Part B
with the benign and malignant gland. The average results of two parts are reported. We use
standard pre-processing and data-augmentation following related work (Sirinukunwattana
et al., 2017; Zhuang and Shen, 2016).

The batch size used is 8 and the margin m is set to 0.1. Because Luncertainty is small in
value, we scale it by 1000 to make it comparable with the other term. The optimizer used
is Adam with a learning rate set as 0.0002. For the sub-sampling, we sample fixed numbers
of instances from Uw and Uc respectively to have a consistent computation overhead in all
experiments.

One choice to be made is whether the manual annotation part should be included in
the calculation of Dice. We find that the number of segmented instances varies significantly
for different classes e.g. 99.8% instances of myocardium were referred when the coverage
c = 0.5. When the number of instances is too small, the Dice score of the class together with
the average Dice fluctuates heavily. Therefore, we choose to include the manual annotation
part in the calculation of Dice. Specifically, we assume the referred instances are correctly
annotated by radiologists and compute the final Dice score on the X instead of Xl. Note
that this matches the real use cases and does not change the relative relationship of different
methods’ Dice.
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(a) Sample size (b) Starting epoch for two-
stage training

(c) λ

Figure 5: Model performance comparison with varying hyper-parameters on MM-WHS.
Note that AURC is the lower the better.

Appendix D. Effect of Hyper-parameters

Effect of sample size. We first explore the effect of sample size on the training time and
the model performance. The training time is measured on a server with an Nvidia 1080 Ti
GPU card. The sample sizes tested are 100× 2200, 200× 4400, 300× 6600, 400× 2200, and
600×13200 in the format of |U ′w|×|U ′c|. The ratio 1

22 is |Uw|
|Uc| of a normally trained model. As

shown in Figure 5(a), a small sample size leads to lower performance and higher variance.
Since a big sample size does not bring too many benefits, a sample size of 300× 6600 (third
point from the left) is used in all following experiments. In this case, our method reduces
the AURC by 13.5% at the cost of increased training time.

Effect of two-stage training. As shown in Figure 5(b), different starting epochs for
the second stage is the x-axis. The model is trained for 10 epochs in total. The results show
that the performance degrades significantly when we only train the model with Luncertainty
for a smaller number of epochs. The reason is that after the change of loss from Lsegmentation
to Lu-seg, the model needs enough training to converge. Therefore, we use Lu-seg from the
beginning of the model training in all other experiments.

Effect of λ. As discussed in Section 2, the performance ψc is determined by ψ1 and γ
and λ determines the balance between ψ1 and γ. We explore several different values of λ
and the results are shown in Figure 5(c). The trend of the curve shows that the performance
degrades when λ is either too big or too small. Additionally, the variance increases with
bigger λ due to the subsampling. Based on this trend, λ = 2 is used in all other experiments.

Appendix E. Per-image Comparison

The per-image comparison between the baseline and our method under different coverage c
on GlaS is shown in Figure 6. In order to show our model’s per-image effect more thoroughly,
we further randomly sample images that has approximately the same per-image coverage
(the dots around y axis in Figure 2 and Figure 6) and compare the Dice in Table 2 and
Table 3 for MM-WHS and GlaS respectively. As can be seen from the table, our method
in general provides better per-image results.
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(a) c=0.95 (b) c=0.9 (c) c=0.8 (d) c=0.7

Figure 6: Per-image comparison of Dice and coverage difference under different coverage on
GlaS. Blue dots are benign gland images Part A of the test set, orange dots are
malignant gland images in Part B of the test set.

Appendix F. Dice Improvement at Different Coverage

If the improvement on Dice comes from the regularization effect only, then we would expect
to see that the Dice difference between our method and the baseline monotonically decreases
as coverage reduces. This is because the uncertain parts which are prone to error are
continuously removed, and thus the largest possible benefit margin also decreases. When
the remaining instances are almost all easy and confidently predicted, different models will
have the same performance despite different uncertainty estimation. The Dice difference
between 1.00 and 0.95 is shown in Table 4. The Dice difference first increases as the coverage
decreases before it starts to decrease. This should come from better uncertainty estimation.
MM-WHS is an easier dataset and thus the difference decreases earlier.
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Table 2: Per-image comparison of Dice
and coverage on MM-WHS.

Coverage Dice (%)

Baseline Ours Baseline Ours

0.948 0.950 92.91 98.03

0.949 0.950 98.14 98.06

0.951 0.949 94.72 98.07

0.948 0.948 92.94 98.10

0.901 0.900 98.24 96.71

0.899 0.900 98.22 98.34

0.899 0.899 97.83 98.21

0.902 0.899 97.92 98.37

0.800 0.801 99.18 99.95

0.800 0.799 98.62 99.44

0.799 0.802 99.60 99.95

0.802 0.802 98.42 99.97

0.701 0.702 99.65 99.93

0.701 0.701 99.96 99.27

0.700 0.698 99.62 99.99

0.700 0.699 98.81 99.99

Table 3: Per-image comparison of Dice
and coverage on GlaS.

Coverage Dice (%)

Baseline Ours Baseline Ours

0.951 0.951 82.99 83.70

0.950 0.949 88.10 89.30

0.949 0.952 87.21 87.39

0.949 0.951 93.20 92.73

0.897 0.898 85.96 86.79

0.896 0.899 89.81 91.22

0.899 0.900 94.44 94.32

0.897 0.900 81.51 88.09

0.802 0.794 87.04 93.52

0.802 0.795 92.58 93.51

0.795 0.798 92.17 94.60

0.803 0.807 94.16 93.04

0.701 0.697 95.84 96.24

0.702 0.708 94.37 95.07

0.692 0.698 92.03 93.17

0.703 0.698 90.81 91.53

Table 4: Dice difference at different coverage.

Coverage 1.00 0.995 0.99 0.98 0.97 0.96 0.95

MM-WHS 0.83 0.94 0.96 0.95 0.92 0.89 0.86
GlaS 1.82 1.87 1.99 2.10 2.13 2.16 2.18
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