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Abstract Purpose In this study, we try to consider the most common type
of total anomalous pulmonary venous connection (TAPVC) and established a
machine learning based prediction model for postoperative pulmonary venous
obstruction (PVO) by using clinical data and CT images jointly.
Method Patients diagnosed with supracardiac TPAVC from January 1, 2009,
to December 31, 2018, in Guangdong Province People’s Hospital were enrolled.
Logistic regression were applied for clinical data features selection, while a
convolutional neural network was used to extract CT images features. The
prediction model was established by integrating the above two kinds of fea-
tures for PVO prediction. And the proposed methods were evaluated using
four-fold cross-validation.
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Result Finally, 131 patients were enrolled in our study. Results show that com-
pared with traditional approaches, the machine learning-based joint method
using clinical data and CT image achieved the highest average AUC score of
0.943. In addition, the joint method also achieved a higher sensitivity of 0.828
and a higher positive prediction value of 0.864.
Conclusion Using clinical data and CT images jointly can improve the per-
formance significantly compared with other methods that using only clinical
data or CT images. The proposed machine learning-based joint method demon-
strates the practicability of fully using multi-modality clinical data.

Keywords total anomalous pulmonary venous connection · pulmonary
venous obstruction · prediction · deep learning

1 Introduction

Along with a variety of clinical features associated with the development of
cardiovascular disease, various prediction models have been developed to iden-
tify high-risk individuals especially for cardiac surgery related disease [1, 2, 3].
Traditional methods for clinical end-points events prediction models usually
use multivariate regression-based analyses. These models identify clinical fea-
tures with odds or hazard ratios and then provide risks for target disease [4, 5],
which enables treatment strategies tailored to an individual.

However, these traditional pre-specified clinical features used prediction
must meet the assumption of independence between features [2, 6]. In an
ideal medical research, because pre-selected clinical features are measured at
pre-identified time points, the collected clinical feature information can be
fully exploited by statistical methods. While, the logistically challenging of
the establishment of traditional prediction methods making medical researches
isn’t ideal. Given the growing volume of data and manual data processing,
traditional methods is time-consuming and expensive, results in traditional
prediction models may not fulfill their expectations [7]. In the current study [8],
traditional clinical features derived from prior cohort studies such as BMI
and TC are not significant predictors for cardiovascular disease in regression
models, which corresponds to previous findings derived from analysis of various
clinical data that shows many traditional clinical features were less significant
factors for cardiovascular disease occurrence.

Deep learning (DL) is a class of machine learning algorithms and demon-
strates excellent performance in classification nowadays [9]. The overall trans-
formations have multiple layers in deep learning and this capacity could en-
hance predictive model performance in complex time-varying datasets. Un-
der large training biomedical data and advanced computing power, DL has
been applied to the development of risk prediction models using real word
data [10, 11, 12, 13]. Weng et al. [11] used routine clinical data from 378,256 pa-
tients from UK family practices, exploited establishing machine learning-based
high-accuracy cardiovascular disease prediction model. Parisot et. al [12] ben-
efited from considering both the auxiliary information with the imaging data
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Fig. 1 A brief illustration of total anomalous pulmonary venous connection.

and non-imaging information in a graphical neural network for brain analysis
in populations. Especially, Husain et. al [13] focued on finding features in the
clinical data that have a close association with recurrent PVO, while having
not exploited radiographs into the model exhibition.

Even though DL shows promising results in many medical fields, an auto-
matic prediction model for PVO prediction which fully exploits clinical data
and CT images is still missing. To solve these problems, we combine clinical
data and CT image to build a prediction model based on machine learning
that explicitly indicates whether a patient will suffer from PVO after surgery.
Specifically, we put forward three machine learning-based methods:

– applying logistic regression with features selected from the clinical data;
– using a convolutional neural network (CNN) to extract features from pa-

tients’ 3D cardiac CT images for prediction;
– building an architecture where clinical data features are combined with

graphical features through an end-to-end trainable CNN.

In this paper, we have used the postoperative pulmonary venous obstruc-
tion prediction problem as a vehicle to explore the practicability of combin-
ing clinical data and CT images to evaluate the discriminative accuracy of a
machine learning-based prediction model, and to integrate repeated-measures
health examination data for prediction of PVO. Finally, we investigated the
feasibility of our method for a subsequent prospective observational study.

2 Background

Congenital heart disease is the leading cause of mortality from birth defects,
and total anomalous pulmonary venous connection (TAPVC) contributes to
about 3% of all congenital heart diseases [14]. Specifically, about 1 in every
7,809 babies born in the United States each year are born with Total Anoma-
lous Pulmonary Venous Connection [8]. It is characterized by failure of the



4 Zeyang Yao and Xinrong Hu et al.

Table 1 The 14 candidate features in the clinical data that may be relevant to postoper-
ative PVO recurrence, their respective ranges, and the importance score (IS) from logistic
regression (clinical data based method).

Feature Range IS Feature Range IS

operation weight 2.63 ∼ 53.0 kg 21.8 hospital stay 0 ∼ 77 d 0.819
ALT 5 ∼ 948 IU/L 0.771 AST 20 ∼ 2420 IU/L 0.237
TBIL 6.8 ∼ 211.6 µmol/L 0.324 DBIL 1.9 ∼ 104.9 µmol/L 0.498
INR 0.83 ∼ 2.55 44.8 PT 31 ∼ 140 s 0.040

cross-clamp 0 ∼ 153 min 0.409 CPB 40 ∼ 290 min 1.38
DHCA 0 ∼ 40 min 4.35 gender {0, 1} 19.0

sutureless {0, 1} 55.4 ligation {0, 1} 59.1

pulmonary venous confluence (PVC) to be absorbed into the dorsal portion of
the left atrium (LA) in combination with a persistent splanchnic connection
to the systemic venous systems. TAPVC has notoriously high mortality reach-
ing nearly 80% without intervention [15]. Even with surgical repair, the death
rate is still reported as 5% to 7%. Pulmonary venous obstruction is one of the
most frequent causes of death after operations. An accurate prediction model
can identify patients with high PVO recurrence risk, and then their chance of
survival will be improved by early preventive treatment.

There are four types of TAPVC referred to as supracardiac, cardiac, intrac-
ardiac type, and mixed type. And the most common subtypes are supracardiac
type which accounts for 30% ∼ 50% of total TAPVC. In the supracardiac type,
the common “ventricle vein” (showed in Fig. 1) connects to the superior vena
cava system via an anomalous “vertical vein”, which is the main blood vessel
that brings oxygen-poor blood from the upper part of the body to the heart.

3 Material and Methodology

3.1 Dataset

As for the types of TAPVC, these four types have heterogeneous anatomical
structures, from clinical perspectives it can be regarded as four different dis-
eases. It is hard for a single prediction model to fit all distinct information,
and a limited number in some types refrain our model construction. In our
study, we choose the most common types, which account for 30% ∼ 50% of
the total number. Finally, 131 patients who were diagnosed with supracardiac
TAPVC and received surgical treatment from January 1, 2009, to December
31, 2018, in Guangdong Provincial Hospital were enrolled. All patients with
completely CT images and clinical data.

For CT images, all 131 patient’s pre-operation CT images were used. For
clinical data, suggested by expert cardiologists, we focused on 14 features,
which were patient weight at the time of operation (operation weight), length
of hospital stay (hospital stay), Alanine Transaminase value (ALT), Aspartate
Aminotransferase value (AST), Total Bilirubin value (TBIL), Direct Biliru-
bin value (DBIL), INR (International Normalized Ratio), Prothrombin activ-
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ity time (PT), aortic cross-clamp time (cross-clamp), CPB time (Cardiopul-
monary Bypass time), Deep hypothermic circulatory arrest time (DHCA), and
binary features including gender, the use of sutureless operation (sutureless),
and ligation. All lab results were collected before the operation. Detail descrip-
tion of our dataset and features along with their ranges were summarized in
Table 1. As for medical images, all 3D CT was captured by a Siemens Biogra-
phy 64 CT scanner, and the typical voxel size were 0.25mm×0.25mm×0.5mm.

Based on the patients’ follow-up record after surgery (which was not part
of this dataset and was not used in model training), when at least one of the
following three conditions was met, there was postoperative PVO recurrence:

– Blood flow in the vertical vein or common trunk of pulmonary vein greater
than 1.8 m/s;

– Atrial septal defect smaller than 3mm;
– Follow-up echocardiography diagnoses obstruction.

About 10% of the patients in the dataset were labeled with postoperative
PVO.

The ratio of positive and negative samples, and the relatively limited num-
ber of our dataset comes from real-word clinical data introduce additional
challenges to our prediction model.

To address these issues, we adopt a series of practical techniques regarding
data preprocessing and learning strategies: i) image augmentation was utilized
to increase the size of CT dataset; ii) for training epochs, positive cases were
over-sampled in an attempt to balance the biased distribution; iii) we modified
the loss function, added L2 normalization of weights in the last fully connected
layer of the CNN for generalization performance, and adjusted the weights of
the PVO and non-PVO samples.

3.2 Clinical Data Based Method

Prognosis about the onset of PVO after TPAVC correction could be treated
as a binary classification problem. With only clinical features taken into con-
sideration, each patient Ak was defined by several features {xk1, xk2, xk3, ...},
and a target label yk indicating whether PVO would occur after surgery (ei-
ther 1 or 0). The problem was then to generate predictions ỹ1, ỹ2, ỹ3, ... and
to optimize a defined loss function

∑
k L(yk, ỹk). There are many methods for

clinical features selection, among these methods, we found that logistic regres-
sion was the most effective method for PVO prognosis in practice, which is also
the most prevalent method used in the medical problem research. Meanwhile,
there are a number of techniques proposed to perform binary classification.
Neural network is one of the artificial intelligence techniques that has many
successful examples when applying to this problem [16, 17, 18].

To decide which features to feed into the prediction model, we initially
selected a set of candidate features from clinical seggestion, and then we re-
cursively prune features from the candidate set in the ascending order of the
features’ importance score until the optimal prediction accuracy was achieved.
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Fig. 2 (a) Architecture of CT Image-Based 3D CNN. The blue cuboid represents 3D feature
maps, and the number of channels is marked above it. (b) Framework of joint clinical data
and Image-Based postoperative PVO prediction method. FC layer: fully connected layer.

3.3 CT Image-Based Method

Cardiac CT images have never been used in the traditional prognosis of TAPVC
repair. Yet CT images provide spatial information like anatomical structure
and tissue development, which clinical data fails to provide. However, those
graphical features are not specified by measurable parameters. Hence, we ap-
plied a convolutional neural network to extract information from patients’ CT
and then made a prediction on postoperative PVO. The input of the network
was 3D images, and thus it resembled a 3D classification network. Many net-
work structures such as VGG [19] and ResNet [20] are potentially well suited
to handle such data. As our goal is to design a clinically usable predictive
model for PVO rather than to compare the accuracy and efficiency of differ-
ent networks, the 3D U-Net, as one of the most classical and easy to deploy
neural network structures, is a very suitable choice. In this paper, we use it
as our basic network structure. Because of the memory bottleneck induced by
3D medical images, very deep CNNs like VGG [19] and ResNet [20] was not
suitable.

Fig. 2(a) illustrates our 3D CNN’s architecture. The original 3D cardiac
CT images were first cropped to the region of interest and resized to a uniform
shape, after which a batch of images was passed to the model. Three resolution
stages consisted of our model, for each resolution stage, there were two convo-
lutional layers followed by max-pooling with stride two to half the resolution
as well as double the number of channels. The size of feature maps maintains
the same for every convolutional operation. We replaced the max pooling with
global pooling to flatten the feature maps in the last stage, which would be
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followed by a fully connected layer for predicting postoperative PVO. For the
global pooling layer, inspired by [21], we used a combination of global max
pooling and global average pooling. These two types of pooling act like two
filters with different frequency responses, so that our model takes advantage
of both high-frequency and low-frequency information. All the convolutional
and pooling operations mentioned above were 3D counterparts. Besides, the
number of resolution stages and initial filters were both adjustable. After com-
parison of different combinations, we decide on this architecture that strikes a
balance between computational efficiency and generalization performance.

3.4 Joint Data and Image-Based Method

Actually, CT images and clinical data give the prediction based on factors from
two distinct domains. Thus, it is a natural thought to combine the knowledge
from those two “experts” skilled in different fields. In other words, using CT
images and clinical data jointly for the prediction task. We concatenated the
selected features from clinical data (based on the method described in Sec-
tion 3.2) with the flattened activations right before the fully connected layer
in our 3D CNN, as shown in Fig. 2(b). In this way, we built an end-to-end
deep learning model making use of both CT images and clinical data, which
we found demonstrates better performance than the methods using either one
of the data sources solely.

3.5 Implementation Details

3.5.1 Image Augmentation

To make full use of all cardiac CT images in the limited dataset, we deployed
classic augmentation methods to enlarge the dataset. Traditional image aug-
mentation methods include translation, rotation, scaling, and flipping [22, 23],
To preserve the spatial structure and relative position of atrial and vessels,
while we used a relatively conservative image augmentation methods, that we
only adopted rotation to increase both the training set and test set. Firstly,
we cropped the CT images so that the region of interest was centered. Then,
we rotated the images clockwise by (10◦, -10◦, 90◦, 180◦, 270◦). As a result,
we could expand the dataset by six times. Noting that we first divided all the
data into four folds with PVO patients evenly distributed. Only then did we
augment the images in each fold and do four-fold cross-validation. This trick
only works for the two methods described in Section 3.3 and Section 3.4, as it
cannot expand clinical data.

3.5.2 Resampling

The distribution of our dataset is highly biased, which genuinely reflects the
recurrence rate of PVO. To deal with the imbalance problem, resampling
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the dataset is a simple and effective method. There were two main methods
called over-sampling and under-sampling. Over-sampling was to add copies of
samples from the under-presented class, and under-sampling was to remove
instances belonging to the over-presented class. In practice, we found over-
sampling fits our dataset better than under-sampling because the dataset was
already small, and reducing training samples would compromise models’ gen-
eralization performance.

3.5.3 Loss Function Optimization

The loss function we choose for the 3D CNN was cross-entropy. However,
during training, we found the training loss was smaller than the validation
loss, indicating potential overfitting of our model on the training dataset. L2
normalization is a common way to alleviate overfitting by restraining weights
from growing too large. The modified loss function for every batch was defined
as:

Lbatch = −
∑
k∈B

weight[class] ∗ ln sk[class] + β |w|2 , (1)

in which B was the batch set, sk[class] was the softmax value of a class
(PVO or non-PVO) at the output layer, w was the weight vector of the last
fully connected layer, and β was an adjustable parameter which we set to be
2. Additionally, we assigned different weight[class] to the two classes, since
positive samples appear at a lower frequency in a batch. A larger weight for
the PVO class forces the model to be more sensitive to wrongly predicting
PVO patients as non-PVO, i.e., false negative, which is more critical than the
other way around. On the other hand, if it is too large, it would lead to a high
false-positive rate. Our experiments suggest that the optimal weights for PVO
and non-PVO classes are (30, 1).

3.6 Evaluation

The evaluation metrics were sensitivity, specificity, positive predictive value
(PPV) and negative predictive value (NPV), sinece they directly reflect the
performance of our postoperative PVO prediction models. And the area un-
der the ROC (Receiver Operating Characteristics) curve - AUC, was reported
as an important measurement of a classification model’s performance. In our
setting, the AUC showed the ability of a method to predict the postopera-
tive PVO recurrence of a patient. And for better explaination of our model
to physicians, we used saliency maps for promoting understandability of the
methods.
4 Result

For the clinical data-based method, logistic regression is applied to make the
prediction as well as to calculate the importance score of each feature. The im-
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Table 2 The prediction performance of the methods with different configurations and tech-
niques in four-fold cross validation. The item ”8” or ”14” indicates the number of adopted
clinical features. For the CT image-based method and the joint method, over-sampling is
always applied.

Methods Fold 1 Fold 2 Fold 3 Fold 4 Average
CT Image-Based (with L2 norm) 0.605 0.615 0.520 0.618 0.590
Clinical Data-Based (8, with over-sample) 0.823 0.801 0.797 0.813 0.801
Clinical Data-Based (8, w/o over-sample) 0.813 0.805 0.792 0.759 0.792
Joint Method (8, with L2 norm) 0.973 0.962 0.916 0.915 0.943
Joint Method (8, w/o L2 norm) 0.947 0.936 0.885 0.907 0.918
Joint Method (14, with L2 norm) 0.814 0.921 0.774 0.735 0.811

portance scores are obtained from the absolute value of features’ coefficients
in the logistic regression model, as listed in Table 1. We gradually remove
some features with the minimum importance score from the 14 candidates.We
have observed that, when the number of predictors is eight, the logistic regres-
sion model achieves the optimal performance. The finally selected 8 features
as postoperative PVO predictors in the clinical data-based method include
operation weight, hospital stay, INR, CPB, DHCA, gender, sutureless, and
ligation.

For the impact of the techniques described in Section 3.5 on the prediction
methods, the average AUC scores of four-fold cross-validation are shown in
Table 2. We can notice that the joint method with 8 clinical features and
L2 norm achievs the highest average AUC score of 0.943. Specifically, the L2
norm can imrove the average AUC score of 0.025 in the joint method when
using 8 clinical features only, and the joint method with 8 clinical features
outperformes those with 14 by 0.132 when both methods use the L2 norm.
This suggests that feature pruning is not only effective for clinical data-based
method, but also the joint one. The highest average AUC of the clinical data-
based method is 0.801 with 8 features involved, and the over-sample method
can slightly improve the performance by 0.009. The highest average AUC of
the CT image-based method is 0.590, which is the lowest in the prediction
methods. The ROC curves of the optimal configurations of the three methods
are showed in Fig. 3. The joint method is consistently better than the other
two, shows the benefits our prediction model gained from features extracted
automatically from CT images.

The joint method also achieves the highest sensitivity of 0.828 and the high-
est PPV of 0.864, which is a significant difference between the other methods.
The joint method has a slightly improvement in specificity and NPV, which
reaches 0.910 and 0.972, respectively. The joint method has a significant im-
provement in the prediction of pvo compared with other methods. However,
the performance of the different methods is basically stable non-pvo predic-
tions. Detailed evaluation results can be found in Fig. 4.

The saliency maps in Fig. 5 are used to explain the prediction results of
the joint method. Saliency maps are shown in the different slices, original CT
images are pixeled in 128×128×128. The joint method has more activation
region which is concentrated in the pulmonary area roughly, while the CT
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Fig. 3 ROC curves of the three different prediction methods. All the techniques in Sec-
tion 3.5 are applied as appropriate on the three methods. The joint method is consistently
better than the other two.

image-based method is activated more decentralized. All the identified imaging
features for the methods are hard to understand for the clinicians.

5 Discussion

The goal of this paper is to showcase the first attempt and methodology
toward a machine learning-based pulmonary venous obstruction prediction
model among supracardiac TAPVC repair patients. Our prediction model of-
fers the possibility to integrate typical multi-modality clinical data like ALT,
INR, and individual CT images, etc. into a neural network without assuming
all features are independent of each other. Among the selected clinical fea-
tures, the surgery technique [25], DHCA [26], gender [27, 28], and operation
weight [28] are researched to be related to PVO according to previous studies.
Meanwhile, the operation information (CPB, cross-clamp, ligation, and hospi-
tal stay) [25, 26, 27] were extremely useful, as the statistical variability between
the PVO and non-PVO groups is extremely significant in many comparitive
studies. And many studies have found that the information of patient-specific
laboratory test results (ALT, AST, INT, PT, TBIL, DBIL) [29, 30] can be
used as a non-invasive test to predict specific clinical medical events, which is
not fully used in the previous PVO prediction model. Our method fully uses
the multi-modality data, and provides a possible method for better predic-
tion of PVO events. Compared with results from clinical data and CT images
only based method, our model shows similar performance reported in other
references [2, 31]. Although for the sake of clarity, we choose not to enumer-
ate all the possible combinations in clinical data only method, while the six
combinations we illustrated are sufficient to observe the effectiveness of the
techniques.
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Fig. 4 Evaluation results of sensitivity, specificity, PPV and NPV among the three dif-
ferent prediction methods. All the techniques in Section 3.5 are applied as appropriate on
the methods. The joint method is consistently better than the other two. PPV: Positive
predictive value; NPV: Negative predictive value

To decide which features to feed into the prediction model, we initially
selected a set of candidate features which cardiologists believe to have direct
or indirect effects on the recurrence of PVO. For example, the sutureless oper-
ation is believed to have a potential impact on the geometric distortion of the
pulmonary venous suture line and thus on the postoperative PVO, according
to the previous study [25]. Then, we recursively prune features from the can-
didate set in the ascending order of the features’ importance score until the
optimal prediction accuracy was achieved. Such an iterative pruning can help
to remove redundant information and reduce potential overfitting.

For image augmentation methods we used in the data preprocessing, it
is worth noting that traditional image augmentation methods include limited
translation, rotation, scaling, and flipping, etc, and all of those methods could
preserve the spatial structure and relative position of vessels. However, in our
work, we find that it is not clear to what extent the transformation is limited,
and we are concerned that it might be difficult to interpret the transformation
of the image data for physicians. Therefore, we temporarily adopt a relatively
conservative image data augmentation approach. To some extent, this is a
limitation of our study. We will further investigate this challenge in our future
work as well, seeking a suitable balance between image data augmentation
methods and physician interpretation.

By more deeply examining the various test results, we notice that in a cer-
tain degree we can not guarantee that models based only on clinical data will
not have the possibility of overfitting. In other words, higher AUC values may
appear when we further select clinical parameters for predictive model con-
struction, or further, adopt more network training skills. However as results
overfitting in a single dataset almost an inherent shortcoming of a neural net-
work, it is acceptable not to pursue the highest average AUC value for clinical
use. To balance the implications of our results with the potential limitations
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Fig. 5 Saliency map for the two image involved method. The joint method has more acti-
vation area which is concentrated in the pulmonary area roughly, while the CT image-based
method is activated more decentralized.

of observational studies, during our collaboration with clinicians, we conclude
that clinical predictive models should base on clinical utility, prediction model
results and model scalability should be balanced to some degree.

A good, but not the best, model it is acceptable, and is sufficient evidence
to support the feasibility of a subsequent prospective observational study. Al-
though our dataset is very scarce, which is the largest and the only study that
attempts to combine clinical data and CT image in supracardiac TAPVC pa-
tients in the world as far as we know, but the disadvantages of a single-center
retrospective research study still exist. Our results only did the traditional
four-fold cross-validation, and using another external validation dataset to
test our method is needed. However, owing to the diseases we study is still a
rare disease and the high cost of follow-up, the amount of data is very small
in a single center. Moreover, it is difficult to convince other medical centers to
share their data with our team, these limitations limit the clinical efficacy of
our method. To verify the clinical efficacy of our model, one possible solution
is to collect more data through prospective observational experiment in our
hospital in the future, and use this kind of prospective data as an external
dataset. We hope that this will advance the application of our method in the
supracardiac TAPVC.

Moreover, it is important to highlight that whilst it is not our objective to
detail the the mathematical basis of machine learning, we aim to underscore
how such a mathematical approach could constructively impact medicine. Our
use of machine learning has concluded that integrate clinical data and CT
images to a postoperative complication prediction model is possible. In future
research, we plan to extend our method to the dataset that comes from our
prospective observational study. Further, the development will focus on the
actual impact of clinical doctors and patients.

Statement of Clinicians: We are not completely convinced by the PVO
predictions derived from this model, but we can use it as a reference. The
main reason for not being able to trust it is our inability to understand how
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the model was processed. The output and presentation of high-dimensional
data are not entirely satisfactory, and there is no satisfactory answer as to
what constitutes these correlations. The clinical focus is more on knowledge
and more on causality rather than on correlation. But if the associations are
accurate, it may be acceptable to accept the predictions of the model. Even if
the model is accurate, predictions derived from single-center data need to be
prospectively validated by multiple centers, to achieve a high-level evidence
under the hierarchy of evidence-based medicine.

6 Conclusion

In this paper, we explored the practicability of combining clinical data and CT
images for PVO prediction. A novel neural network architecture that jointly
learns from clinical data and CT images in an end-to-end trainable manner are
built. We also introduced a group of implementation tips involving data pre-
processing and learning to manipulate the limited and biased dataset pertinent
to the disease. The significant improvement of experimental results demon-
strate the advantage of the proposed method of our joint learning method.
Finally, the feasibility of our method proffers enough evidence for a subse-
quent prospective observational study.
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