
FPGA Based Cellular Neural Network Optimization: From
Design Space to System

Zhongyang Liu
Zhejiang University

Shaoheng Luo
Zhejiang University

Xiaowei Xu
University of Notre Dame

Yiyu Shi
University of Notre Dame

Cheng Zhuo*

Zhejiang University

ABSTRACT

Cellular Neural Network (CeNN) is considered as a powerful
paradigm for embedded devices. Its analog and mix-signal
hardware implementations are proved to be applicable to
high-speed image processing, video analysis and medical
signal processing with its efficiency and popularity limited
by smaller implementation size and lower precision. Recently,
various digital implementations of CeNNs on FPGA have
attracted researchers from both academia and industry due to
its high flexibility and short time-to-market. However, most
existing implementations are typically bounded utilizing the
advantages of FPGA platform inadequately with unnecessary
design and computational redundancy that prevents speedup.
To address these issues, we propose a multi-level optimization
framework for energy efficient CeNN implementations on
FPGAs. In particular, the optimization framework is featured
with three level optimizations: system-, module-, and design-
space-level, with focus on computational redundancy and
attainable performance, respectively. Experimental results
show that with various configurations our framework can
achieve an energy efficiency improvement of 3.54× and up to
3.88× speedup compared with existing implementations.
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1 INTRODUCTION

With an increasing popularity of smart sensing and growing
low-power demands for IoT applications, conventional image
processing designs suffer from inefficient data processing and
high power consumption. Cellular Neural Network (CeNN)
is considered as a viable option to improve the efficiencies
in both power and performance. CeNN is inspired by the
functionality of neurons through modeling the working princi-
ples human brain sensing. It has unique potentials at various
image processing areas such as noise cancellation [11], edge
detection [6], path planning [8] and segmentation [5]. Re-
cently, CeNN has aroused interests from both academic and
industry [1][20][12] for efficient hardware implementations.

The structure of CeNN makes it a natural fit for analog
implementations. Many studies have discussed possible analog
design details [7][18][13][2] to achieve high performance with
fast convergence rate and the convenience of integration with
image sensors. However, due to real time response constraints
and complexity from various application scenarios, there are
still a few key challenges that need to be well addressed in
the conventional CeNN analog implementations:

∙ I/O Resource Consumption: Each input is required
to correspond to a unique neuron cell, consuming too
many I/O resources. For example, a recent implemen-
tation in [2] can only support 256×256 pixels, which
is far below the demands from mainstream images
specification, 𝑒, 𝑔., 1920×1080 pixels.

∙ Noise Susceptibility: Analog circuits are prone to
noise, thereby limiting the output data precision to 7
bits or below [19]. Thus, such analog implementations
can hardly process regular 8-bit gray images.

In view of the aforementioned issues, digital implementa-
tions of CeNNs have become a popular option [10][12] at the
cost of data approximation. However, for such digital imple-
mentations, their efficiencies are limited due to the increased
number of iterations for discrete approximation. For example,
in order to process an image of 1920x1080 pixels, it requires
4-8 Giga operations (for 3x3 templates with around 39 op-
erations per pixel and 50-100 iterations), which can hardly
be completed to meet the typical real-time video streaming
requirement of 40ms.

To tackle the computational challenge, CeNN accelerations
on digital platforms such as ASICs [10][12], GPUs [17] and
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FPGAs [3][16] [14][19][20] [15] have been explored. Among
them, FPGA is a popular alternative due to its high flex-
ibility and low time-to-market. The work [3] presented a
baseline design of FPGA implementation of CeNN for sev-
eral common image processing applications. The study [16]
took the advantage of reconfigurable computing for CeNNs.
The proposed implementation supported multi-scale cellu-
lar image processing as well as several pattern recognition
applications. Recently, a CeNN implementation for binary
image processing was demonstrated in [15], which focused
on highly efficient processing on binary operations to achieve
4.43× speed-up. Expandable and pipelined implementations
were also proposed on multiple FPGAs [14] to further re-
duce the computational cost. Based on that, the work [19]
implemented a high throughput CeNN system to achieve
real-time video streams processing at a visible pixel rate of
124.4 Mpix/s.

With all these works sharing the same architecture for
CeNN and various acceleration techniques, there still lacks a
comprehensive study and design exploration framework for
efficient CeNN implementation, which covers the following
remaining issues:

∙ First, only a single processing element is used to com-
pute one iteration in many existing works. In other
words, the workload cannot be segmented in temporal
domain, and hence do not exploit the full potential of
parallelism [19].

∙ Second, many works are unaware of the repeated pa-
rameters in the template and incur unnecessary I/O
overheads to obtain those parameters. Since I/O access
is much slower than computation, such unawareness
effectively leads to computational redundancy.

∙ The last but not the least, most design space explo-
ration do not well study the utilization of available
resources and bandwidth of FPGAs to achieve the best
performance.

It is not a trivial task to resolve the aforementioned issues.
Various optimization techniques are required for scalable pro-
cessing elements. Thus, in this paper, in order to address
those remaining concerns, we propose a multi-level optimiza-
tion framework for CeNN computation for scalability and
efficiency. The framework is featured with three-level opti-
mizations:

∙ System level optimization(SLO): A parallel and tilling
processing (PTP) is proposed to separate workloads
and enable the parallelism. Moreover, data-reuse opti-
mization is applied to eliminate unnecessary memory
usage and increase the computation efficiency.

∙ Module level optimization(MLO): For processing ele-
ments, the requirements of multipliers are far beyond
affordable resources. Thus, a parameter quantization
scheme is adopted to reduce unnecessary multiplication-
s. Moreover, a memory access technique is proposed
to make full use of memory bandwidth and reduce
processing latency.

∙ Design space level optimization(DSLO): With different
available logical resources and bandwidth, the system
may achieve different performance, which however is
not linear with resource and bandwidth, and hence can-
not be simply predicted. As a result, a roofline model
based method is adopted to conduct more rigorous
performance optimization for specified FPGAs.

Experimental results with different configurations on mul-
tiple FPGA devices are investigated. The results show that,
compared with existing works, the proposed optimization
framework can achieve an energy efficiency improvement of
3.54× and a speed up of 3.88×.

The remainder of the paper is organized as follows. Section
2 introduces background information of the paper. Section 3
resents the framework overview. Section 4 describes system
level optimization for efficient implementation. The proposed
module level optimization techniques are shown in Section
5. Design space level optimization is discussed in Section 6.
Experiments and result discussion are presented in Section 7,
followed by the concluding remarks in Section 8.

2 BACKGROUND

2.1 Cellular neural networks

Different from the prevalent CNNs superior for classification
tasks, CeNN model is inspired by the functionality of visual
neurons, and a mass of neuron cells are connected with
neighbouring ones. Only adjacent cells can interact directly
with each other, which is a significant advantage for hardware
implementation resulting in much less routing complexity
and area overhead. For the widely used 2D CeNN with space-
invariant templates, the dynamics of each cell state with an
M×N rectangular cell array [4] are as follows:

�̇�𝑖,𝑗(𝑡) = −𝑥𝑖,𝑗(𝑡) +

𝑁∑︁
𝑘,𝑙=−𝑁

(𝐴𝑘,𝑙(𝑡)𝑦𝑖+𝑘,𝑗+𝑙(𝑡)+

𝐵𝑘,𝑙(𝑡)𝑢𝑖+𝑘,𝑗+𝑙(𝑡)) + 𝐼(𝑡) (1)

𝑦𝑖,𝑗(𝑡) = 𝑓(𝑥𝑖,𝑗(𝑡)) = 0.5× (|𝑥𝑖,𝑗(𝑡) + 1| − |𝑥𝑖,𝑗(𝑡)− 1|) (2)

Where 1 ≤ 𝑖 ≤ 𝑀 , 1 ≤ 𝑗 ≤ 𝑁 , 𝐴𝑘,𝑙(𝑡) is the feedback
coefficient template, 𝐵𝑘,𝑙(𝑡) is the input coefficient template,
𝐼(𝑡) is the bias, and 𝑥𝑖,𝑗(𝑡), 𝑦𝑖+𝑘,𝑗+𝑙(𝑡) and 𝑢𝑖+𝑘,𝑗+𝑙(𝑡) are
the state, output and input of the cell, respectively. Note
that 𝐴𝑘,𝑙(𝑡), 𝐵𝑘,𝑙(𝑡) and 𝐼(𝑡) are time-variant templates, and
𝑡 can be removed when time-invariant templates are used.
For efficient implementation on a digital platform (e.g., CPU,
GPU, FPGA), discrete approximation of CeNN is obtained by
applying forward Euler approximation as shown in Equation
(3), (4) and (5).

𝑥𝑖,𝑗(𝑡) ∼= (𝑥𝑖,𝑗(𝑛+ 1)− 𝑥𝑖,𝑗(𝑛))/∆𝑡 (3)

𝑥𝑖,𝑗(𝑛+ 1) = 𝑥𝑖,𝑗(𝑛) + ∆𝑡(−𝑥𝑖,𝑗(𝑛) + 𝐼(𝑛) +

𝑁∑︁
𝑘,𝑙=−𝑁

(𝐴𝑘,𝑙(𝑛)𝑦𝑖+𝑘,𝑗+𝑙(𝑛) +𝐵𝑘,𝑙(𝑛)𝑢𝑖+𝑘,𝑗+𝑙(𝑛))) (4)

𝑦𝑖,𝑗(𝑛) = 𝑓(𝑥𝑖,𝑗(𝑛)) = 0.5×(|𝑥𝑖,𝑗(𝑛)+1|−|𝑥𝑖,𝑗(𝑛)−1|) (5)
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Though it is possible to implement the computing opera-
tion with about 39 times operations in each iteration, 𝑥𝑖,𝑗 ,𝑢𝑖,𝑗

and 𝑦𝑖,𝑗 require extra buffers to store and transfer for sub-
sequent operation. One solution is Full signal range(FSR)
model of CeNN, which is more efficient by eliminating the
intermediate variable 𝑥𝑖,𝑗 . FSR model is detailed in [19], and
the modified equations are given as follows:

𝑦𝑖,𝑗(𝑛+ 1) = 𝑓(𝑥𝑖,𝑗(𝑛) +

𝑁∑︁
𝑘,𝑙=−𝑁

𝐴𝑘,𝑙(𝑛)𝑦𝑖+𝑘,𝑗+𝑙(𝑛) + 𝑤𝑖𝑗)

(6)

with the offset term

𝑤𝑖,𝑗 =

𝑁∑︁
𝑘,𝑙=−𝑁

𝐵𝑘,𝑙𝑢𝑖+𝑘,𝑗+𝑙 + 𝐼 (7)

As for hardware implementation, the conversion from
𝑥𝑖,𝑗(𝑛) to 𝑦𝑖,𝑗(𝑛) makes it no longer necessary to store 𝑥𝑖𝑗(𝑛)
in registers any more. In this way 𝑦𝑖𝑗(𝑛) is limited between
1 and -1 and can be expressed in fixed bit width, which is
usually 8 bits including a signal bit. Moreover, FSR model
also simplifies the iteration operation. Outputs of 𝑥𝑖𝑗(𝑛) and
𝑤𝑖𝑗(𝑛) are used for the next iteration to calculating 𝑦𝑖𝑗(𝑛+1)
while discarding 𝑥𝑖𝑗(𝑛+ 1).

For efficient hardware implementation, discrete-time FSR
CeNN models are widely adopted in FPGA implementations
[16][14] [19][20] [15]. In particular, the computation is regular
and reproducible in each iteration. In order to reduce the
computational complexity, (6) and (8) can be rewritten to (8)
and (9). The computation flow is divided into two processes:
A process and B process, each of which corresponds to an
iteration unit. Obviously, A process only executes Equation
(8) and requires double multiplication operations of B process.
By exploiting the FSR model, 𝑤𝑖,𝑗 only needs one calculation
through all iterations. Consequently, the computation flow
can be implemented as a fully pipelined architecture, as the
pipeline depth is the total number of Euler iterations desired.

𝐴 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 : 𝑤𝑖,𝑗 =

𝑁∑︁
𝑘,𝑙=−𝑁

𝐵𝑘,𝑙𝑢𝑖+𝑘,𝑗+𝑙 + 𝐼𝑖,𝑗 (8)

𝐵 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 :𝑦𝑖,𝑗(1) =

𝑁∑︁
𝑘,𝑙=−𝑁

𝐴𝑘,𝑙𝑦𝑖+𝑘,𝑗+𝑙(0) + 𝑤𝑖,𝑗 (9a)

𝐵 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 :𝑦𝑖,𝑗(2) =

𝑁∑︁
𝑘,𝑙=−𝑁

𝐴𝑘,𝑙𝑦𝑖+𝑘,𝑗+𝑙(1) + 𝑤𝑖,𝑗 (9b)

......

𝐵 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 :𝑦𝑖,𝑗(𝑁) =

𝑁∑︁
𝑘,𝑙=−𝑁

𝐴𝑘,𝑙𝑦𝑖+𝑘,𝑗+𝑙(𝑁 − 1) + 𝑤𝑖,𝑗

(9c)

2.2 Roofline Model

Figure 1 shows the roofline model based on I/O bandwidth
and computational performance. The performance is bound-
ed by the I/O bandwidth (BW) and the computational roof
(CR). GFLOPS stands for the number of floating-point op-
erations per second. Operational intensity (OI) features the
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Figure 1: Illustration of the roofline model.

number of operations per byte memory accessed, and the
product of OI and BW constitutes the I/O bandwidth roof.
Generally BW and CR are considered as limits defined by
the implementation details or obtained through benchmarks.
Accordingly, the attainable performance is formulated as:

𝐴𝑃 = 𝑚𝑖𝑛(𝐶𝑅,𝑂𝐼 ×𝐵𝑊 ) (10)

As depicted in Figure 1, OI is relatively high in Configura-
tion A, the applications do not need to consume the entire
I/O bandwidth, and the system are computation bound. As
for Configuration B, BW becomes the limits, and the opera-
tion latency executed per byte are not enough to fit memory
latency. CR is usually fixed for non-programmable hardware,
while it is various for programmable FPGAs. Thus the sets lo-
cated at the right side of or just on the roofline are supported
by the platform. In roofline models for FPGAs, CR and OI
are correlated. There exists a variety of configurations for a
specific system, and the optimal configuration is determined
by the system and the adopted hardware.

3 FRAMEWORK OVERVIEW

As shown in Figure 2, the designed architecture is composed of
external memory, memory interface controller, on-chip input
and output buffers, a computation acceleration unit (CAU),
and AXI4 bus. The workload is divided in the temporal
domain with a fully pipelined structure which is carried out
by a chain of iteration units (IUs). Due to on-chip resource
limitation, data are stored in external memory and cached in
on-chip buffers before processed in CAU. CAU composes the
vital part of the architecture, which is described in detail as
follows:

∙ Iteration Unit A (IUA): The processor chain in CAU
begins with IUA, which calculates both Equation (8)
and (9a). As the template 𝐴𝑖𝑗 from Template RAM
is constant in a time-invariant model, the result of
Equation (8) remains the same in all iterations. Thus
only one IUA is implemented at the very beginning.
Input y of IUA can be ignored, and the first iteration
feedback 𝑦𝑖,𝑗(0) is usually initialized as zero.

∙ Iteration Unit B (IUB): IUB indicates a number of
identical modules, which form the second to the last
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Data Transfer Controller
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RAM
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External Memory

On-chip

Off-chipOff-chip Bus

Figure 2: Overview of the proposed optimization
framework.unit in CAU. The first IUB, which is applied to calcu-

late Equation (9b), captures 𝑤𝑖,𝑗 and 𝑦𝑖,𝑗(1) from IUA.
CeNN iterations are processed in a fully-pipelined ar-
chitecture, i.e., the computation flow has to be divided
into n+1 iterations in temporal domain before finally
transferred into output buffer.

∙ Data Transfer Controller: Data transfer controller man-
ages the data transmission among input buffer and
output buffer, template RAM and FIFOs in pipelined
iteration units.

∙ Template RAM: Template weights are space-invariant,
which means that parameters are constant between
consecutive images. Therefore, Template RAM needs
only a few hardware resources for storage and memory
access.

The following works are based on the optimization of CAU,
which will be discussed in Section 4, 5 and 6.

4 SYSTEM LEVEL OPTIMIZATION

In this section, the parallel and tiling processing strategies and
data-reuse techniques are proposed for an efficient parallel
CeNN architecture.

4.1 Tiling Optimization

Parallel and tiling processing (PTP) is a sufficient approach
correspondingly to make computation resources fully utilized
and increase the maximum pixel rate. By separating work-
loads into 𝑁 parallel arrays in spatial domain, N-PTP can
be implemented in basic or advanced strategies, which allo-
cate IUs in different structures resulting in different internal
memory access operations. Basic strategy divides 𝑁 parts
of input images into 𝑁 parallel arrays, which is composed
of n FIFOs and processing elements (PEs). PE executes the
computation operation of one pixel in one computation cycle.
The topologies of IU is relatively easy to implement. Howev-
er, the number of DRAM ports is the same as the tile size,
which brings a challenge for limited hardware resources. As
for advanced strategy, Data transfer controller split input
images into separate data chunks efficiently. The capacity of
data chunk is equal to tile size 𝑁 , which has significantly

Table 1: Data sharing relationships of matrix da-
ta (Sharing with the previous pixel (SWP), sharing
with the latter pixel (SWL) and independent pixel
(Independent)).

Column 1 Column 2 Column 3
Pixels at TOL Independent SWP/SWL SWL
Pixels at EOL SWP SWP/SWL Independent
Other Pixels SWP SWP/SWL SWL

PE

PE

PE

Memory Access Cycle
Computation 

Cycle

Parallel 
Array 1

Parallel 
Array 2

Parallel 
Array 3

FIFO

Cycle 1 Cycle 2 Cycle 3

Template RAM

Figure 3: Data reuse optimization in advanced 3-
PTP: Two columns of data are shared for a 3×3
template, resulting in 2/3 memory access reduction.

different influence for the design. Data in each data chunk are
arranged spatially with continuity and operated in one cycle.
A data chunk occupies data by the least amount of DRAM
ports when meeting the condition of maximum write/read
bandwidth. Therefore, the number of DRAM ports decreases,
which reduces hardware resources overheads.

4.2 Data-reuse Optimization

As shown in Equation (3), the computation of each pixel is
accompanied by two 3×3 matrices Y and U, which repeats in
a regular manner in adjacent pixels. The optimizing solution
is to minimize the memory access operation by utilizing data
repetition. The distribution and location of repeated data
determine the algorithm. As shown in TABLE 1, data sharing
relationships depend on the location of pixels. All general
pixels occupy the same data sharing relationships except for
pixels at the top of line (TOL) and the end of line (EOL).
Nine parameters of a matrix are divided into three groups
by column, thus all pixels are categorized.

When calculations corresponding to Equation (8) and
(9) are performed in IUs,data-reuse techniques eliminate
excessive data read operation between IU and input buffer,
which is a promising way to simplify memory access. As
an example, the hardware implementation generated by a
3-PTP IU block design with data-reuse is shown in Figure 3.
With accessing registers of adjacent parallel arrays instead of
FIFOs, data-reuse optimization achieves 2/3 memory access
reduction.

5 MODULE LEVEL OPTIMIZATION

The resource utilization of computation operation becomes a
main constraints of system performance when the hardware
implementation is applied. A large number of multiplications
are required at the limits of embedded multipliers resources,
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Figure 4: Quantization optimization for CeNN in
PEs: Processing time is reduced from 9 cycles to
5 cycles, with repetition and sparsity optimization
in Data Scheduler.

and data access latency limits the maximum computation
rate. As for the module level, we present the further design
exploration for IU to overcome these shortcomings.

Equation (9) depicts nine multiplications for CeNN cal-
culation, which provides more opportunities to improve the
computing process. As existing works have proved, 95%-100%
of the embedded multiplier utilization in FPGA become a
bottleneck in CeNN implementations [14]. Investigating the
fact that embedded multipliers only occupy a small propor-
tion of the core area, shifters are alternative methods for
the integer operations. We propose quantization to optimize
computation, which performs power-of-two conversion on
all template parameters. This technique, although reduces
little memory usage or computation complexity, has a sig-
nificant impact on multiplier consumption by transferring
multiplications into logic shifts.

Note that the template quantization brings two critical sce-
narios. First, with power-of-two parameter quantization, most
of the templates occupy 5-6 repeated values, which enables
repetition-induced optimization. Second, parameter quanti-
zation generates sparse matrix and prune the multiplications.
The sparsity-induced and repetition-induced optimization
are efficient in most CeNN applications, for the analysis of
87 tasks with 79 applications indicates that 78.2% templates
are sparse matrix, while 94.4% templates contain repetitive
parameters [9]. The quantization optimization is detailed in
Figure 4.

Since memory access cycle is mostly one order of magnitude
lower than the computation cycles, it has little impact for
basic PTP strategy. However, memory access time for parallel
arrays increases as well when applying advanced PTP strategy.
Data transfer operations of FIFOs must be executed serially,
and the proportion of computation time slumps. Thus, it is
worthy to reorganize and manipulate the on-chip memory
access and computation scheme to reduce processing latency.
Investigating the memory access optimization in advanced

PTP, we overlap parallel phases, and assign memory access
cycles in a pipelined strategy.

6 DESIGN SPACE LEVEL
OPTIMIZATION

Roofline model based on I/O bandwidth and computational
performance is applied to evaluate AP of the target platform.
The concept of byte-operation is adopted to analyze different
kind integers exclusively, which defines a single operation of
one byte integer. By classifying the operation complexity of
different bit width, giga byte operations per second (GOPS/s)
is used as the metric of CR.

We present computational roof of PE in IUA (𝐶𝑅𝑃𝐸𝐴)
and IUB (𝐶𝑅𝑃𝐸𝐵) to indicate different structures in two
kinds of IUs, which are used as basic elements to conclude
𝐶𝑅𝐹𝑃𝐺𝐴. As interpreted in Equation (11), 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑆𝑖𝑧𝑒
presents the number of parallel PEs in one IU. Moreover, OI
varies according to the configuration of PEs. Since the ad-
vanced PTP strategy reduces memory resource consumption
and I/O ports usage, a significant improvement is achieved in
Equation (12). Here 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑃𝐸 indicates byte operations
in one PE per computation cycle.

𝐶𝑅𝐹𝑃𝐺𝐴 = ((𝑛𝐼𝑈 − 1)× 𝐶𝑅𝑃𝐸𝐵 + 𝐶𝑅𝑃𝐸𝐴)× 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑆𝑖𝑧𝑒

(11)

𝑂𝐼 =

{︃
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑃𝐸 × 𝑛𝐼𝑈 advanced PTP
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑃𝐸×𝑛𝐼𝑈×#𝑅𝑜𝑤
#𝑅𝑜𝑤+2×(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑆𝑖𝑧𝑒−1)

basic PTP
(12)

Attainable performance (AP) is determined by the mini-
mum of I/O bandwidth (BW) roof and CR, which is depicted
as follows:

𝐴𝑃 = 𝑚𝑖𝑛(𝐶𝑅𝐹𝑃𝐺𝐴, 𝑂𝐼𝑃𝑇𝑃 ×𝐵𝑊 ) (13)

Figure 5 shows two roofline models with different I/O
bandwidth applying all possible system level and module
level optimization methods. There is a prerequisite that CR
and BW are fixed for any applications in theoretical models.
However, roofline models for FPGA-based frameworks are
not so explicit, mainly resulted from the variable hardware
resource overheads of memory interface controller. Therefore,
We explore the design space for the platform and enumerate
a set of implementations to select the target one (C) both
satisfying CR and BW in Figure 5(b).

7 EXPERIMENT

We implemented the proposed CeNN framework on Xilinx
Zybo board with Zynq XC7Z010 and Zedboard with Zynq
XC7Z020. Implementation reports are generated to summa-
rize the resource utilization and estimated latency accurately
and efficiently.

Firstly, we proposed system and module level optimization
as described above under the constraint of 3-PTP and 8
pipelines. Table 2 summarizes the performance comparison of
the basic CeNN approach (Basic) [19] and the implementation
of the proposed framework using system level optimization
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Figure 5: Comparison of (a) theoretical and (b)
FPGA-based roofline models.

Table 2: Resource utilization and performance com-
parision.

Basic MLO SLO Basic
SLO+
MLO

SLO+
MLO+DSLO

Pipeline Depth 8 8 8 82 92 37
LUTs 15336 13632 10232 All All All

Computational
Performance(Gops/s)

5.75 9.06 5.34 22.41 45.21 86.98

Computational Density
(Gops/LUTs)

3.75×
E-4

6.65×
E-4

5.22×
E-4

N/A N/A N/A

Improvement 1x 1.78x 1.39x 1x 2.01x 3.88x

(SLO) and module level optimization (MLO). For a fair com-
parison, we introduce the concept of computational density as
a measure of energy efficiency which is hence independent of
hardware platforms. In [21], computational density is defined
as the average GOPS per area unit (GOPS/LUTs). As shown
in the first three rows, MLO achieves a speedup of 1.58×
and an energy efficiency improvement of 1.78× with the uti-
lization of LUTs decreasing to 89% compared with the basic
approach. SLO is 1.39× more energy efficient compared with
the basic approach, while its resource utilization decreases
to 66.72%.

For the purpose of analyzing the maximum attainable
performance, we investigate the efficiency when combining
different optimization techniques under various constraint
scenarios. With design space level optimization (DSLO), re-
source utilization is constrained while numbers of PTP and
pipeline depth is variable on the same FPGA platform. More
experiments are shown in the last three columns of Table
2. The optimal model based on SLO+MLO+DSLO has the
highest computational performance which achieves a 3.88x
speedup. Moreover, a 3.54× energy efficiency enhancement
can be roughly estimated by computational density compared
with the basic model.

Implementations on different platforms are presented in
Figure 6. Each point denotes the working mode that the
FPGA may achieve, which depicts that 5-PTP tends to be
an optimal model for Zybo, while 4-PTP for Zedboard. As
OI increases, the attainable performance increases first until
it comes to a local maximum where the peak performance is
obtained. With overall optimization, the optimal solution can
be selected for the given platform with desired performance
and operational intensity.
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Figure 6: Roofline models of the proposed design
space optimization on two different platforms (Zybo:
17600 LUTs, Zedboard: 53200 LUTs).

8 CONCLUSIONS

We propose an efficient multi-level optimized framework for
the extended FPGA CeNN implementations. In system level,
Parallel and tilling processing(PTP) and data-reuse opti-
mization are applied. The computation flow is improved by
separating the workload in spatial domain. In module level
optimization, computation and memory access are optimized
considering the limiting resources and memory bandwidth.
In design space optimization, we apply the aforementioned
optimization techniques of different CeNN scales in roofline
models accordingly of attainable performance and operational
intensity. Then the optimal CeNN solution can be selected
with desired performance and operational intensity. Finally,
evaluations of the proposed framework are presented on dif-
ferent FPGA platforms, and a speed up of 3.88× is achieved
compared with existing implementations.

REFERENCES
[1] F. Al Machot, M. Ali, A. H. Mosa, C. Schwarzlmüller, M. Gut-

mann, and K. Kyamakya. Real-time raindrop detection based on
cellular neural networks for adas. Journal of Real-Time Image
Processing, pages 1–13, 2016.

[2] S. J. Carey, D. R. Barr, B. Wang, A. Lopich, and P. Dudek.
Mixed signal simd processor array vision chip for real-time image
processing. Analog Integrated Circuits and Signal Processing,
77(3):385–399, 2013.

[3] H.-C. Chen, Y.-C. Hung, C.-K. Chen, T.-L. Liao, and C.-K. Chen.
Image-processing algorithms realized by discrete-time cellular neu-
ral networks and their circuit implementations. Chaos, Solitons
& Fractals, 29(5):1100–1108, 2006.

[4] L. O. Chua and T. Roska. Cellular neural networks and visual
computing: foundations and applications. Cambridge university
press, 2002.

[5] M. Duraisamy and F. M. M. Jane. Cellular neural network based
medical image segmentation using artificial bee colony algorithm.
In Green Computing Communication and Electrical Engineer-
ing (ICGCCEE), 2014 International Conference on, pages 1–6.
IEEE, 2014.

[6] O. B. Gazi, M. Belal, and H. Abdel-Galil. Edge detection in
satellite image using cellular neural network. system, 8:9, 2014.

[7] H. Harrer, J. A. Nossek, T. Roska, and L. O. Chua. A current-
mode dtcnn universal chip. In Circuits and Systems, 1994.
ISCAS’94., 1994 IEEE International Symposium on, volume 4,
pages 135–138. IEEE, 1994.



FPGA Based Cellular Neural Network Optimization: From
Design Space to System NCS ’17, July 17–19, 2017, Knoxville, TN, USA

[8] J. Hills and Y. Zhong. Cellular neural network-based thermal
modelling for real-time robotic path planning. International
Journal of Agile Systems and Management 20, 7(3-4):261–281,
2014.

[9] K. Karacs, G. Cserey, Zarndy, P. Szolgay, C. Rekeczky, L. Kek,
V. Szab, G. Pazienza, and T. Roska. Software library for cellular
wave computing engines. Cellular Sensory and Wave Computing
Laboratory of the Computer and Automation Research Institute,
2010.

[10] S. Lee, M. Kim, K. Kim, J.-Y. Kim, and H.-J. Yoo. 24-gops 4.5-

𝑚𝑚2 digital cellular neural network for rapid visual attention in
an object-recognition soc. IEEE transactions on neural networks,
22(1):64–73, 2011.

[11] H. Li, X. Liao, C. Li, H. Huang, and C. Li. Edge detection of noisy
images based on cellular neural networks. Communications in
Nonlinear Science and Numerical Simulation, 16(9):3746–3759,
2011.

[12] D. Manatunga, H. Kim, and S. Mukhopadhyay. Sp-cnn: A scalable
and programmable cnn-based accelerator. IEEE Micro, 35(5):42–
50, 2015.

[13] G. Manganaro, P. Arena, and L. Fortuna. Cellular neural network-
s: chaos, complexity and VLSI processing, volume 1. Springer
Science & Business Media, 2012.

[14] J. J. Martnez, J. Garrigs, J. Toledo, and J. M. Ferrndez. An
efficient and expandable hardware implementation of multilayer
cellular neural networks. Neurocomputing, 114:54–62, 2013.

[15] J. Muller, R. Wittig, J. Muller, and R. Tetzlaff. An improved
cellular nonlinear network architecture for binary and greyscale
image processing. IEEE Transactions on Circuits and Systems

II: Express Briefs, 2016.

[16] R. Porter, J. Frigo, A. Conti, N. Harvey, G. Kenyon, and
M. Gokhale. A reconfigurable computing framework for multi-scale
cellular image processing. Microprocessors and Microsystems,
31(8):546–563, 2007.

[17] S. Potluri, A. Fasih, L. K. Vutukuru, F. Al Machot, and K. Kya-
makya. Cnn based high performance computing for real time
image processing on gpu. In Nonlinear Dynamics and Syn-
chronization (INDS) & 16th Int’l Symposium on Theoretical
Electrical Engineering (ISTET), 2011 Joint 3rd Int’l Workshop
on, pages 1–7. IEEE, 2011.

[18] A. Rodrguez-Vzquez, G. Lin-Cembrano, L. Carranza, E. Roca-
Moreno, R. Carmona-Galn, F. Jimnez-Garrido, R. Domnguez-
Castro, and S. E. Meana. Ace16k: the third generation of mixed-
signal simd-cnn ace chips toward vsocs. IEEE Transactions on
Circuits and Systems I: Regular Papers, 51(5):851–863, 2004.

[19] N. Yildiz, E. Cesur, K. Kayaer, V. Tavsanoglu, and M. Alpay.
Architecture of a fully pipelined real-time cellular neural network
emulator. IEEE Transactions on Circuits and Systems I: Regular
Papers, 62(1):130–138, 2015.

[20] N. Yildiz, E. Cesur, and V. Tavsanoglu. On the way to a third
generation real-time cellular neural network processor. CNNA
2016, 2016.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimiz-
ing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pages
161–170. ACM, 2015.


	Abstract
	1 Introduction
	2 Background
	2.1 Cellular neural networks
	2.2 Roofline Model

	3 Framework Overview
	4 System Level Optimization
	4.1 Tiling Optimization
	4.2 Data-reuse Optimization

	5 Module Level Optimization
	6 Design Space Level Optimization
	7 Experiment
	8 Conclusions
	References

