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Cellular Neural Network (CeNN) is considered as a powerful paradigm for embedded devices. Its analog and

mix-signal hardware implementations are proved to be applicable to high-speed image processing, video

analysis, and medical signal processing with its efficiency and popularity limited by smaller implementation

size and lower precision. Recently, digital implementations of CeNNs on FPGA have attracted researchers

from both academia and industry due to its high flexibility and short time-to-market. However, most existing

implementations are not well optimized to fully utilize the advantages of FPGA platform with unnecessary

design and computational redundancy that prevents speedup. We propose a multi-level-optimization frame-

work for energy-efficient CeNN implementations on FPGAs. In particular, the optimization framework is fea-

tured with three level optimizations: system-, module-, and design-space-level, with focus on computational

redundancy and attainable performance, respectively. Experimental results show that with various config-

urations our framework can achieve an energy-efficiency improvement of 3.54× and up to 3.88× speedup

compared with existing implementations with similar accuracy.
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1 INTRODUCTION

With an increasing popularity of smart sensing and growing low-power demands for IoT appli-
cations, conventional image processing designs suffer from inefficient data processing and high-
power consumption [1, 2]. Cellular Neural Network (CeNN) is considered as a viable option to
improve the efficiencies in both power and performance. CeNN is a nonlinear cellular processor
array inspired by the functionality of neurons through modeling the working principles of human
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brain sensing. It has widely applied to noise cancellation [3], edge detection [4], path planning [5],
segmentation [6, 7], and so on. Recently, CeNNs receive increasing interests from both academia
and industry [8–10] for efficient hardware implementations.

CeNNs with fine granularity have the potential for analog implementations. Many studies have
discussed possible analog design details [11–14] to achieve high performance with fast conver-
gence rate and the convenience of integration with image sensors. However, due to real-time
response constraints and complexity from various application scenarios, it is not a trivial task
to achieve a good hardware implementation of CeNN with efficiencies in both performance and
power. There are a few key challenges that need to be well addressed in the conventional CeNN
analog implementations:

• I/O Resource Consumption: Each input is required to correspond to a unique neuron cell,
consuming too many I/O resources. For example, a recent implementation in Reference [14]
can only support 256×256 pixels, which is far below the demands from mainstream images
specification, e.g., 1920×1080 pixels.

• Noise Susceptibility: Analog circuits are prone to noise, thereby limiting the output data
precision to 7 bits or below [15]. Thus, such analog implementations can hardly process
regular 8-bit gray images.

In view of the aforementioned issues, digital implementations of CeNNs have become a viable
option [10, 16] at the cost of data approximation. Their efficiencies are limited due to the increased
number of iterations for discrete approximation. For example, to process an image of 1,920×1,080
pixels, it requires 4–8 Giga operations (for 3×3 templates with around 39 operations per pixel and
50–100 iterations), which can hardly be completed to meet the typical real-time video streaming
requirement of 40ms.

Recently, CeNN accelerations on digital platforms such as ASICs [10, 16], GPUs [17], and FPGAs
[9, 15, 18–23] have been widely studied. Among them, FPGA is a popular alternative due to its high
flexibility and low time-to-market. References [22, 23] propose low-power techniques and parallel
strategies for energy-efficient neuromorphic designs. Reference [18] presented a baseline design of
FPGA implementation of CeNN for several common image processing applications. Reference [19]
took the advantage of reconfigurable computing for CeNNs. The proposed implementation sup-
ported multi-scale cellular image processing as well as several pattern recognition applications. Re-
cently, a CeNN implementation for binary image processing was demonstrated in Reference [21],
which focused on highly efficient processing on binary operations to achieve a 4.43× speedup.
Expandable and pipelined implementations were also proposed on multiple FPGAs [20] to fur-
ther reduce the computational cost. Based on that, Reference [15] implemented a high throughput
CeNN system to achieve real-time video streams processing at a pixel rate of 124.4Mpixel/s. With
all these works sharing the same architecture for CeNN, there still lacks a comprehensive study
and design exploration framework for efficient CeNN implementation, which covers the following
remaining issues:

• First, many existing works only employ a single processing element to compute one itera-
tion, and hence do not exploit the full potential of parallelism [15].

• Second, many works are unaware of the repeated parameters in the template and incur
unnecessary I/O overheads to obtain those parameters. Since I/O access is much slower
than computation, such unawareness effectively leads to computational redundancy.

• Last but not least, many design-space explorations do not well study the utilization of avail-

able resources and bandwidth of FPGAs to achieve the best performance [24].
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Thus, in this article, to address those remaining concerns, we propose a multi-level-optimization
framework for CeNN computation for scalability and efficiency. The framework is featured with
three-level optimizations:

• System-level optimization (SLO): A parallel and tilling processing (PTP) and a data-reuse
optimization are proposed to enable the parallelism of CeNNs.

• Module-level optimization (MLO): For processing elements, parameter quantization is
adopted to eliminate unnecessary multiplications. Moreover, a memory access scheme is
proposed to make full use of memory bandwidth and reduce processing latency.

• Design-space-level optimization (DSLO): With different available logical resources and
bandwidth, the system may achieve different performance, which, however, is not linear
with resource and bandwidth, and hence cannot be simply predicted. Thus, we propose
a roofline model based method to conduct more rigorous performance optimization for
specified FPGAs [24].

Experiments with different configurations on multiple FPGA devices are investigated. The exper-
imental results show that, compared with existing works, the proposed optimization framework
can achieve an energy-efficiency improvement of 3.54× and a speedup of 3.88×. We then apply the
proposed framework for mass segmentation to the problem of benign and malignancy diagnosis
in mammogram. It shows that the CeNN based framework can achieve a better accuracy of 94.87%,
compared with prior works in References [25–29], with significantly improved performance and
hardware overheads.

The remainder of the article is organized as follows. Section 2 introduces background informa-
tion of the article. Section 3 presents the optimized architecture. Section 4 describes system-level
optimization for efficient implementation. The proposed module-level-optimization techniques are
presented in Section 5. Design-space-level optimization is discussed in Section 6. Experiment and
result discussion are presented in Section 7, followed by the concluding remarks in Section 8.

2 BACKGROUND

2.1 Cellular Neural Networks

CeNN model is inspired by the functionality of visual neurons, and a mass of neuron cells are
connected with neighbouring ones. Only adjacent cells can interact directly with each other. This
is a significant advantage for hardware implementation, resulting in much less routing complexity
and area overhead. For the widely used 2D CeNN with space-invariant templates, the dynamics of
each cell state with an M×N rectangular cell array [30] are as follows:

ẋi, j (t ) = −xi, j (t ) +
N∑

k,l=−N

(Ak,l (t )yi+k, j+l (t ) + Bk,l (t )ui+k, j+l (t )) + I (t ), (1)

yi, j (t ) = f (xi, j (t )) = 0.5 × ( |xi, j (t ) + 1| − |xi, j (t ) − 1|). (2)

Where 1 ≤ i ≤ M , 1 ≤ j ≤ N , Ak,l (t ) is the feedback coefficient template, Bk,l (t ) is the input co-
efficient template, I (t ) is the bias, and xi, j (t ), yi+k, j+l (t ), and ui+k, j+l (t ) are the state, output, and
input of the cell, respectively. Note that Ak,l (t ), Bk,l (t ), and I (t ) are time-variant templates, and t
can be removed when time-invariant templates are used. For efficient implementation on a digital
platform (e.g., CPU, GPU, FPGA), discrete approximation of CeNN is obtained by applying forward
Euler approximation as shown in Equations (3), (4), and (5).

xi, j (t ) � (xi, j (n + 1) − xi, j (n))/Δt , (3)
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xi, j (n + 1) = xi, j (n) + Δt ��
�
−xi, j (n) + I (n) +

N∑

k,l=−N

(Ak,l (n)yi+k, j+l (n) + Bk,l (n)ui+k, j+l (n))��
�
, (4)

yi, j (n) = f (xi, j (n)) = 0.5 × ( |xi, j (n) + 1| − |xi, j (n) − 1|). (5)

Though it is possible to implement the computing operation with about 39 times operations in
each iteration, xi, j ,ui, j , andyi, j require extra buffers to store and transfer for subsequent operation.
One solution is the Full Signal Range (FSR) model of CeNN, which is more efficient to implement by
eliminating the intermediate variable xi, j . Please refer to Reference [15] for the detailed description
of the FSR model, and the modified equations are

yi, j (n + 1) = f ��
�
xi, j (n) +

N∑

k,l=−N

Ak,l (n)yi+k, j+l (n) +wi j
��
�
, (6)

with the offset term

wi, j =

N∑

k,l=−N

Bk,lui+k, j+l + I . (7)

As for hardware implementation, the conversion from xi, j (n) to yi, j (n) makes it no longer nec-
essary to store xi j (n) in registers any more. In this way, yi j (n) is limited between 1 and −1 and can
be expressed in fixed bit width, which is usually 8 bits including a signal bit. Moreover, FSR model
also simplifies the iteration operation. Outputs of xi j (n) and wi j (n) are used for the next iteration
to calculate yi j (n + 1) while discarding xi j (n + 1).

For efficient hardware implementation, the discrete-time FSR CeNN model is widely adopted in
FPGA implementations [9, 15, 19–21]. In particular, the computation is regular and reproducible
in each iteration. To reduce the computational complexity, Equations (7) and (6) can be rewritten
to Equations (8) and (9). The computation flow is divided into Process A and Process B, each of
which corresponds to an iteration unit. Obviously, Process A only executes Equation (7) while
Process B executes Equation (6). By exploiting the FSR model, wi, j only needs to be calculated for
one time through all iterations. Consequently, the computation flow can be implemented as a fully
pipelined architecture, and pipeline depth is equal to the total number of Euler iterations desired:

Process A : wi, j =

N∑

k,l=−N

Bk,lui+k, j+l + Ii, j , (8)

Process B :yi, j (1) =
N∑

k,l=−N

Ak,lyi+k, j+l (0) +wi, j , (9a)

Process B :yi, j (2) =
N∑

k,l=−N

Ak,lyi+k, j+l (1) +wi, j , (9b)

......

Process B :yi, j (N ) =
N∑

k,l=−N

Ak,lyi+k, j+l (N − 1) +wi, j . (9c)

Template learning is a widely studied and applied method to find satisfactory templates Ak,l

and Bk,l for CeNN-based applications, in which Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) are mainly used. A training algorithm based on PSO is applied to improve overall
accuracy [26]. PSO searches the solution space with multiple particles in a heuristic way. Inspired
by the social behavior of animals, the position update of each particle is influenced by its past local
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Fig. 1. Illustration of the roofline model.

best position. It performs position update and object function calculation iteratively until all the
required template parameters are trained.

2.2 The Roofline Model

Figure 1 shows the roofline model based on I/O bandwidth and computational performance. The
performance is bounded by the I/O bandwidth (BW) and the computational roof (CR). GFLOPS
stands for the number of floating-point operations per second. Operational intensity (OI) features
the number of operations per byte memory accessed, and the product of OI and BW constitutes
the I/O bandwidth roof. Generally, BW and CR are considered as limited factors defined by the
implementation details or obtained through benchmarks. Accordingly, the attainable performance
is formulated as

AP =min(CR,OI × BW ). (10)

As depicted in Figure 1, OI is relatively high in Configuration A, the applications do not need to
consume the entire I/O bandwidth, and the systems are computation bound. As for Configuration
B, BW becomes the limited factor, and the operation latency executed per byte are not enough to
fit memory latency. CR is usually fixed for non-programmable hardware, while it becomes various
for programmable FPGAs. Thus, the designs located at the right side of or just on the roofline are
supported by the platform. In roofline models for FPGAs, CR, and OI are correlated. There exists
a variety of configurations for a specific system, and the optimal configuration is determined by
the system and the adopted hardware.

3 FRAMEWORK OVERVIEW

As shown in Figure 2, the designed framework is composed of external memory, memory interface
controller, on-chip input and output buffers, a computation acceleration unit (CAU), and AXI4
bus. Due to on-chip resource limitation, data are stored in external memory and cached in on-chip
buffers before processed in CAU. The workload is divided in the temporal domain with a fully
pipelined structure, where different iterations are processed simultaneously in different iteration
units (IUs). CAU is carried out by a chain of IUs, which is described in detail as follows:

• Iteration Unit A (IUA): The processor chain in CAU begins with IUA, which calculates
both Equations (8) and (9a). As the template Ai j from Template RAM is constant in a time-
invariant model, the result of Equation (8) remains the same in all Euler iterations. Thus,
only one IUA is implemented at the very beginning. Input y of IUA can be ignored, and the
first iteration feedback yi, j (0) is usually initialized as zero.
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Fig. 2. Overview of the proposed optimization framework.

• Iteration Unit B (IUB): IUB indicates a number of identical modules, which form the second
to the last unit in CAU. The first IUB, which is applied to calculate Equation (9b), captures
wi, j and yi, j (1) from IUA. CeNN iterations are processed in a fully-pipelined architecture,
i.e., the computation flow has to be divided into n+1 iterations in temporal domain before
finally transferred into the output buffer.

• Data Transfer Controller: Data transfer controller manages the data transmission among
the input buffer and the output buffer, template RAM and FIFOs in pipelined IUs. It also
guarantees the synchronization of data transmission and computation in case of variant
bandwidth features of the off-chip bus.

• Template RAM: The weights in CeNNs are space-invariant, which means that template
parameters are constant between consecutive images. Therefore, Template RAM needs only
a few hardware resources for storage and memory access.

The architecture is designed to load image stream from external memory, process it with CeNN
and convert the result back, where CAU constitutes the most important component. The following
works are based on the optimization of CAU, which will be discussed in Sections 4, 5, and 6.

4 SYSTEM-LEVEL OPTIMIZATION

In this section, the parallel and tiling processing strategies and data-reuse techniques are proposed.

4.1 Tiling Optimization

Parallel and tiling processing (PTP) is an effective approach to fully utilize computation resources
and increase the maximum pixel rate. N-PTP divides input data into N parallel arrays, of which N
is defined as tile size. By separating workloads in spatial domain, PTP can be implemented in two
strategies, basic strategy and advanced strategy, which allocate IUs in different structures resulting
in different internal memory access operations. These two PTP strategies are explained explicitly
as follows:

• Basic Strategy: As shown in Figure 3(a), input images are divided into four parallel arrays
in spatial domain for 4-PTP and are distributed into four processing elements (PEs). PE
executes the computation of one pixel in one cycle. By dividing address of the input buffer,
IU topology is relatively easy to implement. However, the number of DRAM ports is the
same as the tile size, which brings a challenge for limited hardware resources.
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Fig. 3. Memory usage with 4-PTP for (a) basic strategy and (b) advanced strategy.

Table 1. Data Sharing Relationships of Matrix Data (Sharing with the

Previous Pixel (SWP), Sharing with the Latter Pixel (SWL), and

Independent Pixel (Independent))

Column 1 Column 2 Column 3
Pixels at TOL Independent SWP/SWL SWL
Pixels at EOL SWP SWP/SWL Independent
Other Pixels SWP SWP/SWL SWL

• Advanced Strategy: In Figure 3(b), input images are split into separated data chunks, of
which the capacity is equal to the tile size. Data in each data chunk are arranged spatially
with continuity and operated in one cycle. A data chunk occupies data by the least amount
of DRAM ports when meeting the condition of maximum write/read bandwidth. Therefore,
the number of DRAM ports decreases, which reduces hardware resources overheads.

4.2 Data-reuse Optimization

As shown in Equation (3), the computation of CeNN is accompanied by two 3×3 matrices Y and U,
which repeats in a regular manner in adjacent pixels. Data-reuse optimization is to minimize the
memory access operation by utilizing repeated data. The distribution and location of repeated data
determine how the algorithm operates. As shown in Table 1, data sharing relationships depend on
the location of pixels. Except for pixels at the top of line (TOL) and the end of line (EOL), the other
pixels have the same sharing relationships. Nine elements of a matrix are divided into three groups
by column, thus all pixels are classified into three categories.

When calculations corresponding to Equations (7) and (9) are performed in IUs, data-reuse based
on data sharing relationships eliminates excessive read and write operations of IUs and the in-
put buffer, which is a promising way to simplify memory access. As an example, the hardware
implementation of a 3-PTP IU block design with data-reuse technique is shown in Figure 4, with
image data tiled into three parallel arrays. Note that adjacent pixels share two columns of data for
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Fig. 4. Data reuse optimization in advanced 3-PTP: Two columns of data are shared for a 3×3 template,

resulting in 2/3 memory access reduction.

a 3×3 template, we only need to access one column of data from FIFO, which results in 2/3 memory
access reduction.

5 MODULE-LEVEL OPTIMIZATION

As for the module level, a large number of multiplications are required using the limited embedded
multipliers on FPGAs, and the data access latency limits the maximum computation rate. In this
section, the further design exploration is presented for IUs to overcome these shortcomings. We
propose parameter quantization to reduce multiplier consumption and memory access optimiza-
tion to eliminate redundant data transfer time.

5.1 Parameter Quantization

Equation (9) depicts nine multiplications for CeNN calculation, which provides more opportunities
to improve the computing process. As existing works have proved, 95%–100% embedded multipli-
ers are used while only 5% LUTs are used for a FPGA-based CeNN implementation, which becomes
a bottleneck [20]. A possible solution is to decrease or eliminate multipliers required. Investigating
the fact that embedded multipliers only occupy a small proportion of the core area, shifters are
alternative methods for the integer operations. We propose parameter quantization to optimize
computation, which performs power-of-two conversion on all template values. The quantization
is depicted in Equation (11), where k andm indicate the range, anduq(i ) presents the optimized pa-
rameters. This technique, although has little impact on memory usage or computation complexity,
reduces multiplier consumption by transferring multiplications into logic shifts:

uq(i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2p if 3 × 2p−2 ≤ |uq(i ) | < 3 × 2p−1;
k ≤ p ≤ m;

2m if |uq(i ) | ≥ 2m ;

0 if |uq(i ) | < 2−k−1.

(11)

It is noted that template quantization may bring two critical scenarios. First, with power-of-
two parameter quantization, most of the templates occupy 5–6 repeated values, which enables
repetition-induced optimization. Therefore, multiplications and additions among repeated values
can be optimized, e.g., a1 × y1 + a1 × y2 + a1 × y3 = (a1 + a2 + a3) × y3, three multiplications is op-
timized to one. Second, parameter quantization generates a sparser matrix with some parameters
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Fig. 5. Quantization optimization for CeNN in PEs: Processing time is reduced from nine cycles to five cycles,

with repetition and sparsity optimization in Data Scheduler.

rounding to zero. Parameters whose absolute values are smaller than 2−k−1 are rounded to zero
after the conversion. The quantization optimization is detailed in Figure 5. The sparsity-induced
and repetition-induced optimization are found to be efficient in most CeNN applications, based on
our analysis of 87 tasks with 79 applications, which shows that 78.2% templates are sparse matrix,
while 94.4% templates contain repetitive parameters [31].

5.2 Memory Access Optimization

Since memory access time is mostly one order of magnitude lower than computation time, it has
little impact for basic PTP strategy. However, with the increased amount of input data, the memory
access time for parallel arrays increases as well when using advanced PTP strategy. Thus, the
proportion of computation time slumps, and it is worthy to reorganize and manipulate the on-
chip memory access and computation scheme to reduce processing latency.

Image data are buffered for each phase, while loading and offloading time for registers are in-
dependent. we divide one phase into two parts, ComputationA and ComputationB. When PE is
processing for ComputationA, registers offload data for the current phase. While no offloading
operation is required in ComputationB, registers are prepared to load data for the next phase
in memory access cycle. Figure 6 shows the timing of several computation and memory access
phases for parallel arrays. When investigating the memory access optimization in advanced PTP,
we overlap parallel phases, and arrange memory access cycles in a pipelined strategy. Note that
this optimization work for any data transfer mechanism in this framework, which is determined by
computation cycle and memory access cycle. The phase cycle for general applications is expressed
in Equation (12):

Phase cycle = max �
�
memory access cycle × �

�
parallel size

− computation cycle

memory access cycle
�
�
, computation cycle�

�
.

(12)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 4, Article 47. Pub. date: November 2018.



47:10 Z. Liu et al.

Fig. 6. Pipelined strategy of memory access and computation.

6 DESIGN-SPACE-LEVEL OPTIMIZATION

Roofline model based on I/O bandwidth and computational performance is used to evaluate AP of
the target platform. As exposed in Section 5.1, floating-point operations are converted into fixed-
point integer operations. The concept of byte-operations are adopted to analyze different kinds
of integers exclusively, which defines a single operation of one byte integer. By classifying the
operation complexity of different bit width, gigabyte operations per second (GOPS/s) is used as
the metric of CR. CRF PGA is defined as follows:

CRF PGA = ((nIU − 1) ×CRP EB +CRP EA) × parallel size . (13)

There are one IUA and nIU -1 IUBs implemented in the proposed CeNN architecture in total. We
present computational roof of PE in IUA (CRP EA) and IUB (CRP EB ) to indicate different structures
in two kinds of IUs, which are used as basic elements to conclude CRF PGA. Parallel size reflects
the number of parallel PEs in one IUB.

Moreover, OI also varies with the reconfiguration of PEs. Since the advanced PTP strategy
reduces memory resource consumption and I/O ports usage, a significant improvement in OI is
achieved. It is practicable to get OI:

OI =
⎧⎪⎪⎨⎪⎪⎩

operationsP E × nIU Advanced PTP

oper ationsP E×nIU ×#row

#row+2×(par allel size−1) Basic PTP
. (14)

Here operationsP E indicates byte operations in one PE per computation cycle. AP is determined
by the minimum of I/O bandwidth (BW) roof and CR, which is depicted as follows:

AP =min(CRF PGA,OI × BW ). (15)

In FPGA-based hardware applications, different number of AXI-IP interfaces are set to alter I/O
bandwidth of AXI bus to data transfer controller. As shown in Figure 7, adding AXI-IP interfaces
from 2 to 16 drives a fivefold increase in LUT consumption, and the maximum I/O bandwidth
rises almost linearly from 650MB/s to 3.6GB/s. Consequently, a framework with as few AXI-IP
interfaces as possible to meet the requirement of I/O bandwidth roof is the optimal one.

In Figure 8(a), applying all possible system level and module-level-optimization methods, two
roofline models with different I/O bandwidth are presented. Theoretical roofline models perform
the impacts that OI has on the attainable roof, with the prerequisite that BW and CR are fixed for
any applications. However, roofline models for FPGA-based frameworks are not so explicit. For
example, although two framework are implemented on the same platform in Figure 8(b), different
I/O bandwidths result in various hardware overheads. BW1 achieves a higher I/O bandwidth roof
and a lower CR compared with the counterpart of BW2, for more implemented AXI-IP interfaces
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Fig. 7. (a) Resource consumption and (b) I/O bandwidth with different number of AXI-IP interfaces.

Fig. 8. Comparison of (a) theoretical and (b) FPGA-based roofline models.

with BW1 reduces the available computation resources. Therefore, B and C cannot be satisfied by
the CR with BW1 at the target platform.

We explore the design space for the platform and enumerate a set of implementations with the
highest attainable performance. In most cases, we could find more than one design within the set,
e.g., both B and C satisfy the highest AP with BW2 in Figure 8(b). The selected design ought to be
C, which derives from the fact that OI 4 is greater than OI 3 with the same AP. Therefore, fewer
AXI-IP interfaces and hardware resources are required for the implementation.

7 EXPERIMENT

7.1 Multi-level Optimization

We implemented the proposed CeNN framework on Xilinx Zybo board with Zynq XC7Z010 and
Zedboard with Zynq XC7Z020, with critical paths optimized based on timing reports. Implementa-
tion reports are generated to summarize the resource utilization and estimated latency accurately
and efficiently. We then evaluate the proposed techniques of three-level optimizations for CeNNs
with a specified number of iterations to ensure the performance comparison is conducted under
the same resource constraint.

7.1.1 System-Level Optimization. Table 2 summarizes the performance comparison of the basic
CeNN approach (Basic) and the implementation of the proposed framework using different op-
timization schemes. To partition the contribution of various level optimizations in a quantitative
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Table 2. Resource Utilization and Performance Comparison Under

the Constraints of 3-PTP and Eight Pipelines

Basic [15] SLO MLO
LUTs 15,336 10,232 13,632
FFs 10,824 6,944 10,656

Computational Performance(GOPS/s) 5.75 5.34 9.06
Energy consumption (μJ ) 2,823 733 1,366

Computational density (GOPS/LUTs) 3.75×E-4 5.22×E-4 6.65×E-4
Improvement 1× 1.39× 1.78×

way, we employ the advanced 3-PTP strategy using eight pipelines and then conduct system-level
optimization (SLO) and module-level optimization (MLO). We will discuss design-space-level op-
timization (DSLO) with comparisons between combined optimization techniques in Section 7.1.4,
for DSLO contributes a further development on the basis of SLO and MLO. The basic approach
is extracted from Reference [15], which is the state-of-art CeNN hardware design. Due to its spe-
cific architecture, it is reconfigured to make the same feature size as our proposed framework for
a fair comparison. We evaluate the resource consumption, energy consumption, computational
performance and density.

The on-chip energy per classification to solve the DDSM segmentation problem [32] (439×454
resolution on average at 100MHz clock rate) is reported by Xilinx Vivado 2016.2. SLO achieves a
significant reduction mainly because of the reuse of FIFOs. Since different architectures investi-
gate different optimization strategies under different FPGA platforms, it is challenging to make
a straightforward comparison among them. For a fair comparison, we introduce the concept of
computational density as a measure of energy efficiency, which is hence independent of hardware
platforms. As in Reference [33], computational density is defined as the average GOPS per area
unit (GOPS/LUTs).

As shown in the first two rows of Table 2, SLO achieves a higher performance, which is 1.39×
more energy efficient compared with the basic approach, while its resource utilization of LUTs
decreases to 66.72%.

7.1.2 Module-Level Optimization. MLO include two key techniques, parameter quantization
(PQ) and memory access optimization (MA), as discussed in Section 5. To better illustrate the
impact of MLO on computational performance, we compare the efficiency by enabling PQ and MA
separately as well as their combination (PQ+MA). Figure 9 shows the results. It is worthwhile to be
noted that unlike basic approach, whose performance continues climbing to 12GOPS/s with nine
multipliers, PQ+MA easily converges to 18GOPS/s with merely three multipliers. The convergence
is due to the fact that the part exceeding 3 multipliers would be redundant for the computation in
one PE. Compared with the basic approach, MA brings a significant performance improvement of
1.5×. By utilizing PQ, the minimum number of multipliers to reach peak performance is reduced
from nine to three. As shown in the third row of Table 2, MLO achieves a speedup of 1.58× and an
energy-efficiency improvement of 1.78× with its resource utilization decreasing to 89% compared
with the basic approach.

7.1.3 Design-Space-Level Optimization. As discussed in Section 6, with specified hardware re-
sources and I/O bandwidth, we can propose an exclusive roofline model for a specific algorithm.
For different FPGA platforms, we can then obtain different roofline models accordingly of attain-
able performance and operational intensity. Two roofline models for two different FPGA devices
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Fig. 9. Computational performance with different number of multipliers per PE.

Fig. 10. Roofline models of the proposed design-space optimization on two different platforms (Zybo: 17,600

LUTs; Zedboard: 53,200 LUTs).

are presented in Figure 10. As mentioned in Section 6, given specific basic elements IUA and IUB,
tile size nIU and parallel size, the computational roof can be calculated by Equation (13). Then, we
enumerate all the possible tile sizes and parallel sizes and generate a set of working modes with
different operational intensity that the FPGA may achieve. The upper bound of attainable perfor-
mance is considered as the highest computational roof among these working modes. The line of
bandwidth roof is also defined by the platform specification. Any working modes at the left side or
the upper side of two roofs require overmuch bandwidth or resources, respectively, which exceeds
the target FPGA platform capacity. As OI increases, the attainable performance increases until it
comes to a local maximum where the peak performance is obtained. After that the I/O resource
consumption continues increasing and then degrades the performance. Thus, with DSLO, the op-
timal solution can be selected for the given platform with desired performance and operational
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Fig. 11. Pipeline depth and performance comparisons among Basic, SLO+MLO, and SLO+MLO+DSLO.

intensity. As shown in Figure 10, 4-PTP tends to be an optimal model for Zybo, while 5-PTP for
Zedboard.

7.1.4 Overall Optimization. In previous subsections, we discussed the performance of the
single-level optimization technique under the constraint of 3-PTP and eight pipelines. In this sub-
section, we investigate the efficiency of the proposed techniques, when combining different levels
of optimization, under various constraint scenarios. Two key constraints are identified: (1) speci-
fied numbers of PTP and pipeline depth; (2) resource utilization. Again, similar as in Table 2, we
compare the combined optimization techniques SLO+MLO and SLO+MLO+DSLO, with the basic
approach (Basic). It is noted that for constraint (1) due to different resource overheads, DSLO can-
not be employed under this constraint. Thus, only SLO+MLO and Basic are compared. Figure 11(a)
illustrates the comparisons of LUTs, pipeline depth and performance among results from the com-
binations and basic approach with constraint (1). SLO+MLO achieves a 1.8× speedup and a 3.54×
energy-efficiency enhancement, which can be roughly estimated by computational density com-
pared with the basic model. Meanwhile, resource utilization of LUT decreases by 49.19% in total,
which is much larger than utilizing MLO or SLO alone.

To show the contribution of DSLO quantitatively, more results are depicted in Figure 11(b),
where constraint (2) is applied and pipeline depth is variable in the same FPGA platforms. The
optimal model based on SLO+MLO+DSLO has the highest computational performance and the
least pipeline depth. The highest computational performance achieves a 3.88× speedup.

7.2 Application for Mammographic Mass Segmentation

We also evaluate the proposed optimization framework on a real application, breast cancer seg-
mentation, which is popular and critical for breast cancer classification and diagnosis. As shown in
Figure 12, the segmentation method in the proposed system is performed on images from a widely
used database, digital database for screening mammography (DDSM) [32].

The proposed system for benign and malignant breast tumor diagnosis consists of pre-
processing, segmentation, feature extraction and tumor classification, of which we focus on the
CeNN segmentation stage. For CeNN template training, particle swarm optimization (PSO) is used.
We selected 161 cases containing malignant and benign masses. The intensity, textural, and shape
features are then extracted from segmented tumors to reveal the characteristics of the segmented
masses. The selected features are given to a Multi-layer Perceptron (MLP) as the input vectors [25].

For fair comparison, prior works using different segmentation approaches in diagnosing benign
or malignant tumors on DDSM database are listed in Table 3. For example, Reference [25] uses
region growing algorithm whose threshold is obtained by a trained neural network. The CeNN
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Fig. 12. Comparison between original images from DDSM database (the first row) and segmented images

(the second row).

Table 3. Comparison with Our Proposed Method and Existing Methods

in Benign or Malignant Tumors Diagnosis

Method Segmentation Approach Accuracy (%)
Proposed method CeNN& PSO 94.87
Rahimeh et al., 2014 [25] Region Growing 94.67
Wang and Yang et al., 2014 [26] CeNN& DGA 92.74
Liu and Tang, 2013 [27] Level-Set-Based 93.00
Zhang et al., 2012 [28] Multiple Weak Segmentors 72.00
Verma et al., 2010 [29] ANN 88.75

whose template is trained with distributed genetic algorithm (DGA) is proposed in Reference [26].
A level-set-based method that adopts the FCM clustering with spatial information constraints is
employed in Reference [27]. It indicates that the CeNN segmentation method provides comparable
results. The performance of classification accuracy is even better than that of prior works. Further-
more, our proposed framework can obtain a resource reduction of 49.2% and a 1.8× speedup.

8 CONCLUSIONS

We propose an efficient multi-level-optimization framework for the FPGA CeNN implementations.
In system-level, parallel and tilling processing (PTP) and data-reuse optimization are applied. The
computation flow is improved by separating the workload in spatial domain. In module-level opti-
mization, we propose parameter quantization to reduce multiplier overheads and memory access
optimization for the data transfer mechanism. In design-space optimization, we apply different
aforementioned optimized designs and obtain roofline models accordingly of attainable perfor-
mance and operational intensity. Then the optimal CeNN solution can be selected with desired
performance and operational intensity. Finally, evaluations of the proposed framework are pre-
sented on different FPGA platforms, and a speed up of 3.88× is achieved compared with exist-
ing implementations. Applications for mammographic mass segmentation based on the proposed
CeNN framework achieves comparable accuracy compared with existing works, while achieving
a 1.8× speedup with 49.2% less resources consumption.
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