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a b s t r a c t

Real-time 3D biomedical image segmentation is always preferred considering the exponentially growing
medical imaging data for the past decade. Recently deep learning has significantly boosted the perfor-
mance of automatic medical image segmentation with high computation and memory requirements,
especially for 3D biomedical images. Meanwhile, the privacy and security of patient data have always
been the primary concern in medical applications among hospitals and clinics, and there also exists some
applications which need real-time processing in clinic practice. Thus, 3D biomedical image segmentation
is typically required to be performed locally (i.e. on the edge) with limited computation and memory
resources. In this paper, we propose to combine multi-view ensemble and Surrogate Lagrangian relax-
ation (SLR) for real-time 3D biomedical image segmentation on the edge. Instead of directly dealing with
3D biomedical images, our segmentation conducts on the three 2D domains of the 3D images with an
ensemble strategy. In addition, Surrogate Lagrangian relaxation is proposed to compress the model to
enable high efficiency and real-time processing. Experiments on a typical edge Nvidia GPU show that
our method achieves real-time processing which is 1:5� faster with an improvement of 9% on accuracy
compared with single-view models. It also saves 26� computational resources and 6�memory resources
compared to 3D segmentation models.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

With pervasive medical imaging applications in health care,
biomedical image segmentation has always been one of the most
important tasks in biomedical imaging research [1,2]. Biomedical
image segmentation extracts different tissues, organs, pathologies,
and biological structures, to support medical diagnosis, surgical
planning, and treatments. In common practice, pathologists and
radiologists perform segmentation manually, which is time-
consuming and tedious, especially for 3D images. The problem
becomes more prominent in terms of cost and reproducibility con-
sidering the exponentially growing medical imaging data for the
past decade [3–5]. Therefore, automatic real-time biomedical
image segmentation is highly desirable.

Recently deep learning has significantly boosted the perfor-
mance of automatic medical image segmentation [6,1,7,8,6,9–14].
However, on one hand, performing deep learning computation
for such an application usually requires extremely high computa-
tion cost [15]. For example, segmenting a 3D Computed Tomogra-
phy (CT) volume with a typical neural network 3D U-Net [2] would
involve around 2.2 Tera (1012) high precision floating point opera-
tions, taking days for such processing on a desktop-level computer
[16]. And for computing on the cloud, 3D U-Net still takes about a
hundred milliseconds to segment such a CT image [16]. On the
other hand, deep learning models usually stack layers with mil-
lions of parameters, which requires high memory. U-Net [17], the
most widely used deep convolutional neural network in medical
image segmentation, has 30M parameters with a model size being
386MB. SegNet [18], another popular but smaller medical image
segmentation model, has 30M parameters with a model size being
117MB. Some other models derived from these two methods, such
as R2U-Net [19], which combines residual block and recurrent con-
volution to replace the original sub-module in U-Net, contain 39M
parameters; and Attention UNet [20], which adds attention mech-
anism, contains 34M parameters.
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Meanwhile, the privacy and security of patient data have
always been the primary concern in medical applications among
hospitals and clinics [21,22. In addition, there are also some appli-
cations such as real-time ultrasound quality control and diagnosis
in the clinic [23,24. As such, protocols typically require medical
image processing tasks such as denoising, segmentation, and diag-
nosis to be performed locally, i.e., on the edge. However, local
machines and devices are usually with rather limited computation
resources including computing and memory capacity compared
with those in the cloud [15]. The constrained resources brings
many challenges to the design of medical image segmentation
algorithms, e.g., the algorithms need to process the 3D images in
time (real-time if possible) while with limited computing and
memory resources.

Currently, most related works focus on real-time segmentation
without consideration of constraint resources on the edge. Fradi
et al. [23] performed real-time bone image segmentation using
ultrasonic Computed Tomographic images. Li et al. [25] proposed
automatic 2D tongue image segmentation for real-time remote
diagnosis. Hu et al. [26] used real-time tumor margin identification
for image-guided robotic brain tumor resection based on 2D MRI
images. Islam et al. [27] performed real-time instrument segmen-
tation in robotic surgery using auxiliary supervised deep adversar-
ial learning based on 2d camera-captured images. Xie et al. [28]
proposed near real-time hippocampus segmentation using a
patch-based canonical neural network based on 2D images. Jha
et al. [29] explored real-time polyp segmentation in video capsule
endoscopy and colonoscopy. Anas et al. [30] proposed a deep learn-
ing approach for real-time prostate segmentation in 2D freehand
ultrasound-guided biopsy. Jami et al. [31] performs melanoma seg-
mentation on 2d skin images in the scenario of mobile health.
There are also some works about resource efficient networks for
real-time segmentation, which, however, focus on only 2D images.
Xu et al. [32] performed mobile telemedicine with compressed cel-
lular neural networks for real-time 2D X-ray segmentation. Ni et al.
[33] proposed an attention-guided lightweight network for real-
time segmentation of robotic surgical instruments based on cam-
era captured 2D images. Zhou et al. [34] proposed a lightweight
attention encoder–decoder network for 2D ultrasound image
segmentation.

In this paper, different from exiting works, we focus on 3D
biomedical image segmentation which can achieve real-time pro-
cessing on the edge. Particularly, we propose to combine multi-
view ensemble and Surrogate Lagrangian Relaxation (SLR) [35].
With multi-view ensemble, we split the three-dimensional images
into a series of two-dimensional images in three different planes
and apply 2D segmentation model, respectively to balance the
relationship between segmentation speed and accuracy. For each
single-viewmodel, we further propose the SLR-based weight prun-
ing method [36] to improve the running speed while keeping the
model resource-efficient. Experiments on a typical edge Nvidia
GPU show that our method achieves real-time processing which
is 1:5� faster with an improvement of 9% on accuracy compared
with single-view models. It also saves 26� computational
resources and 6�memory resources compared to 3D segmentation
models.

We summarize our contributions as:

� To the best of our knowledge, this is the first work that explores
real-time 3D biomedical image segmentation considering both
computation and memory requirement on the edge;

� We propose to combine multi-view ensemble and Surrogate
Lagrangian relaxation for real-time 3D biomedical image
segmentation;

� We propose SLR-based model compression technique to enable
real-time processing;
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� We have conducted various experiments, and results show that
real-time segmentation can be achieved with little accuracy
loss.

2. Related work

2.1. Medical image segmentation

Inspired by the U-Net architecture [17], fully convolutional net-
works (FCNs) have dominated biomedical image segmentation.
DCAN [37], for example, created a contour recognition decoding
branch for unified multi-task learning with well-defined object
boundaries. Active learning has been intensively investigated to
alleviate the work of human annotations. Based on uncertainty
and similarity estimation, Suggestive Annotation [38] actively
picked the most representative examples to alleviate the potential
limit from the datasets. MILD-Net [39] created a complex structure
by including a minimal information loss unit to compensate for
data loss during downsampling. [40] presented a two-stream
chained segmentation approach that effectively fuses the CT and
PET modalities via early and late 3D deep-network-based fusion.
Meanwhile, [41] designed multi-stage architecture and attention
blocks to deal with small areas segmentation in WCE image. Also,
deep CNNs with dense blocks have been applied to obtain high per-
formance using a 3D segmentation from MRIs [42]. As for vessel
segmentation, more and more methods pay attention to the
multi-scale context information to improve the segmentation of
the thick vessels and thin vessels. For example, [43] introduced a
pyramid scale aggregation block to aggregate coarse-to-fine con-
text information in each layer of the network. [44] separated the
segmentation of thick vessels and thin vessels in different
brunches to balance potential imbalance between them.

2.2. Multi-view based segmentation

Multi-view-based segmentation has been widely used in a vari-
ety of applications. For instance, [45] presented a shape-aware
multi-view autoencoder, which exploits the spatial context from
the long-axis images to guide the segmentation on the short-axis
images and achieves accurate and robust segmentation of the myo-
cardium to improve the robustness of cardiac segmentation, out-
performing baseline models (e.g., 2D U-Net, 3D U-Net) while
achieving higher data efficiency. Based on a multi-view convolu-
tional neural network, CardiacNET [46] created a method with an
adaptive fusion strategy and a new loss function strategy, which
shown to greatly improve the segmentation accuracy on the exist-
ing benchmark for LA and proximal pulmonary veins (PPVs) seg-
mentation, can need for ablation therapy planning and clinical
guidance in atrial fibrillation (AF) patients. Automatic segmenta-
tion of brain images is also a mainstream topic in recent years.
[47] presented a semi-supervised algorithm and a DCNNs architec-
ture for the 3D MRI whole brain segmentation problem, which is
designed to exploit a large amount of unlabeled data, while the
goal of the novel architecture is to enlarge the receptive field of
the model and utilize more structure information of brains. The
same is true of other medical disciplines. MV-CNN [48], for exam-
ple, created a multi-view convolutional neural network for lung
nodule segmentation, which can segment various types of nodules,
including juxta-pleural, cavitary, and non-solid nodules. The
results show encouraging performance. [49] proposed a deep-
learning-based automated method for Multiple Sclerosis (MS)
lesion segmentation is presented, which can help diagnosis and
patient follow-up while reducing the time-consuming need for
manual segmentation. Fetal ultrasound (US) is the primary imag-
ing modality to monitor fetal development, [50] proposed a
method to extract the human placenta at late gestation using
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multi-view 3D US images based on 3D convolutional neural net-
works. It is a fully automatic method for extracting whole placenta
volumes at late gestation, with a dice overlap of 0.8 and placental
volumes comparable to MR. Aiming at the perfection and strength-
ening of methodology, [51] proposed a new multi-view spatial
aggregation framework for joint localization and segmentation of
multiple OARs using H&N CT images, which to iteratively improve
the segmentation accuracy and consistency within and across
image slices. As for microvascular networks segmentation, [52]
used a suitable image analysis workflow to handle vessel segmen-
tation from light-sheet fluorescence microscopy (LSFM) data in
very large tissue volumes. They provided a systematic analysis of
multi-view deconvolution image processing workflow to control
and evaluate the accuracy of the reconstructed vascular network
using various low to high level, metrics, to achieve sufficient for
a reliable quantitative 3-D vessel segmentation for their possible
use for perfusion modeling. 3DMV [53] presented a novel method
for 3D semantic scene segmentation of RGB-D scans in indoor envi-
ronments using a joint 3D-multi-view prediction network, the final
result on the ScanNet 3D segmentation benchmark [54] increases
from 52.8% to 75% accuracy compared to existing volumetric
architectures.
2.3. Model compression

As deep neural networks (DNNs) are more and more widely
studied and explored, DNNs are getting larger and heavier that
not only take a long time to train, but also need a large space to
store. Many mathematical investigations have demonstrated that
there exists a significant margin of redundancy in DNNs across fil-
ters and channels [55–57]. Several prior works have focused on
reducing weight storage using the weight pruning technique while
keeping negligible accuracy loss. One representative work is [55]. It
uses a three-step method to iteratively prune the unimportant
weights, cut redundant connections in DNNs, and then retrain
the DNN to recover accuracy. 9� weight reduction is achieved on
AlexNet for the ImageNet dataset without accuracy degradation.
As indices are needed in this work to locate which weight to prun-
ing, it has been extended in several works [58]. For instance, [59]
proposed an energy efficiency-aware pruning method that aimed
to facilitate energy-efficient hardware implementations with cer-
tain accuracy degradation. [60] proposed a structured sparsity
learning technique that partially overcomes the problem of irregu-
lar structure of the network after pruning. [61] employed an evolu-
tionary algorithm for weight pruning that incorporated
randomness in both pruning and growing of weights. However,
all these prior weight pruning techniques are either highly heuris-
tic or need a long retraining phase to recover the accuracy. [62]
proposed a systematic framework that achieves a faster conver-
gence rate and higher compression ratio. [36] further improved
this method by leveraging Surrogate Lagrangian Relaxation [35],
which further accelerates the convergence speed and even enables
retrain-free model compression.
3. Proposed method

In this section, we will describe the detail of our segmentation
framework, including the U-Net based multi-view ensemble, and
the proposed SLR for weight pruning. The overall structure is sum-
marized in Fig. 1.

As shown in Fig. 1, we firstly parse the 3D biomedical image
(e.g., a cardiac CT image) into three 2D domains: axial view, sagittal
view, and coronal view [46]. Each view is a series of 2D images.
Then, the same CNN architecture is applied on each view for the
pixel-wise segmentation. Because the problem is constrained from
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the 3D domain to the 2D domain, the computational burden is suf-
ficiently reduced. Model compression technique is also leveraged
on all the three CNN models to further enable real-time segmenta-
tion. The resulting segmentation output of each view is combined
through a fusion strategy, which is designed to maximize the infor-
mation content from different views as well as correct the informa-
tion captured by different models. The details of the model
structure, the model compression technique, and the fusion oper-
ation are given in the following subsections.

3.1. Multi-view ensemble

U-Net based Segmentation Model. The leveraged U-Net [1]
based segmentation CNN model is shown in Fig. 2. ResNet-18
[63] is used as the backbone model. The entire network structure
is constructed based on the ResNetUNet structure from Usuyama
et al. [64]. As shown in Fig. 2, ResNet-18 blocks in the left half
are inserted into the architecture for encoder purposes to reduce
the image dimensions and extract feature representations. All
ResNet-18 blocks are formulated as Conv ! BatchNorm ! ReLu
! Conv ! BatchNorm with skip connection, and two blocks are
connected using ReLu (rectified linear unit) Layer. The ConvReLu
blocks on the right half perform decoder roles, with goals being
semantically project the learned discriminative features onto the
pixel space. Two blocks are connected using upsampling layers to
convert the images to their original sizes. Concatenation between
the higher resolution features from the encoder network and the
corresponding upsampled features from the decoder network
enables the network to learn representations more complicated.

Loss Function. For the loss function, Chosen loss functions have
a major role in deep network image segmentation. Recently, cross-
entropy has been combined with other loss functions in CNN-
based image segmentation and classifications to obtain high per-
formance [65,66]. In this work, we have used the weighted sum
of binary cross-entropy loss and dice loss [9] as our loss function,
as shown in Eq. 1. Binary cross-entropy loss is used because of
our binary class segmentation problem. Dice loss is fused in
because of its ability of handling the data with imbalanced class.
It is developed from the Sørensen-Dice coefficient [67,68], which
measures the relative overlap between the prediction and the
ground truth, and becomes a widely used metric in the computer
vision community to calculate the similarity between two images
[69]. As shown in Eq. 2, ytrue and ypred respectively represent pairs
of corresponding pixel values of ground truth (target mask) and
prediction. The numerator is the sum of correctly predicted pixels.
It is the overlap between prediction and ground truth, so it consid-
ers loss information locally. The denominator is the sum of total
pixels of the predicted mask and the ground truth mask, so it con-
siders the loss information globally. These together lead to high
accuracy as loss information is considered locally and globally.

Loss ¼ ½BCE� bce weight� þ ½Dice� ð1� bce weightÞ� ð1Þ

Dice Loss ¼ 1�
2
X
pixels

ytrue � ypredX
pixels

y2true þ
X
pixels

y2pred
ð2Þ
3.2. Surrogate lagrangian relaxation for weight pruning

In order to reduce the model size and achieve real-time seg-
mentation, surrogate Lagrangian Relaxation-based (SLR-based)
model compression technique is adopted.

Consider an N-layer deep neural network. The weights at each
convolutional layer are denoted as Wi, and the collection of biases



Fig. 1. Overview of the proposed training procedure. With the input being a series of 3D images, we first split the 3D images into 2D images through three different views, and
feed them to three single-view 2D models. For each single-view model, SLR weight pruning is applied for lighter weight models. After the three single-view prediction results
are obtained, we use the multi-view information fusion strategy to get the 3D predicted segmentation result.

Fig. 2. Details of the U-Net based segmentation model. We use ResNet-18 as the backbone of the U-Net from [1]. ResNet18[i] means the i-th block of ResNet-18 architecture.
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in each layer is denoted as bi, where i 2 1;2; . . . ;N. Then the loss

function can be written as f ðfWigNi¼1; fbigNi¼1Þ. The objective of irreg-
ular weight pruning can be done by minimizing the loss function
and making it subject to constraints on the cardinality of weights
in each convolution layer. This can be formulated as Eq. 3, where
the constraint restricts the number of nonzero elements in the
matrix Wi being less than ai, which is the desired number of
weights in the i-th layer of the DNN model:

minimizefWig;fbig f Wif g; bif gð Þ;
subject to card Wið Þ 6 ai; i ¼ 1; . . . ;N:

ð3Þ
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This can further be equivalently rewritten in an unconstrained form
as Eq. 4:

minimizefWig;fbig f Wif g; bif gð Þ þ
XN
i¼1

hi Wið Þ
( )

: ð4Þ

The first term of Eq. 4 represents the nonlinear loss function, and
the second represents the non-differentiable penalty term [62] that
hið:Þ is the indicator function shown in Eq. 5:

hi Wið Þ ¼ 0 ifcard Wið Þ 6 ai;

þ1 otherwise:

�
ð5Þ
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Clearly, the problem cannot be solved only analytically or only
using stochastic gradient descent because of the non-
differentiable part. Duplicate variables [70] are introduced to enable
the decomposition into smaller manageable subproblems and the
problem is rewritten as Eq. 6:

minimizefWig;fbig f Wif g; bif gð Þ þ
XN
i¼1

hi Zið Þ;

subject to Wi ¼ Zi; i ¼ 1; . . . ;N

ð6Þ

To solve the problem, SLR leverages the Lagrangian multipliers Ki to
relax the constraints Wi ¼ Zi (where dimKi ¼ dimWi), and penal-
izes their violations using quadratic penalties with a positive scalar
penalty coefficient q, as shown in Eq. 7 below.

Lq Wi;bi;Zi;Kið Þ ¼ f Wi;bið Þ þ
XN
i¼1

hi Zið Þ

þ
XN
i¼1

tr KT
i Wi � Zið Þ

h i
þ
XN
i¼1

q
2 Wi � Zik k2F ;

ð7Þ

where k:k2F denotes the Frobenius norm and trð:Þ denotes the trace.
The relaxed problem can be decomposed into two subproblems and
being solved iteratively until convergence.

SubProblem 1: Solve ‘‘loss-function” subproblem for Wi us-
ing Stochastic Gradient Decent. At iteration t, the objective of
the ‘‘loss-function” subproblem is minimized by keeping Zi at pre-
viously obtained values Zt�1

i , that is, the Lagrangian function for
given values of multipliers Kt

i is minimized:

minWi ;bi
Lq Wi;bi;Z

t�1
i ;Ki

� �
. Stochastic gradient decent (SGD) [71]

can be leveraged to solve this subproblem as the loss function is
differentiable. At this point, the following ‘‘surrogate” optimality
condition in Eq. 8 needs to be satisfied to ensure that multipliers
are updates along ‘‘proper” directions:

Lq Wt
i ;b

t
i ;Z

t�1
i ;Kt

i

� �
< Lq Wt�1

i ;bt�1
i ;Zt�1

i ;Kt
i

� �
: ð8Þ

As demonstrated in [35], the above condition ensures that Lagran-
gian values approach dual values; consequently, multiplier-
updating directions (violation levels of relaxed constraints
Wt

i ¼ Zt�1
i ) approach subgradient directions, which, in turn, form

acute angles with directions toward optimal multipliers. As a
result, when multipliers are updated along the directions
Wt

i ¼ Zt�1
i :

K
tþ1

2
i :¼ Kt

i þ st�
1
2 Wt

i � Zt�1
i

� �
ð9Þ

by using ‘‘appropriate” stepsizes [35],

st�
1
2 ¼ at st�1 jjWt�1�Zt�1 jj

Wt�Zt�1k k ð10Þ

the multipliers asymptotically approach optimal multipliers. If the
‘‘surrogate” optimality condition is not satisfied, previous step-
sizes and multipliers are kept.

SubProblem 2: Solve ‘‘Cardinality” problem for Zi through
weight pruning using Projections onto Discrete Subspace. The
cardinality subproblem can be written as

minZi Lq Wt
i ;b

t
i ;Zi;K

tþ1
i

� �
, that being solved with respect to Zi by fix-

ing other variables at Wi. As hið:Þ is indicator function, the global
optimal of this subproblem can be obtained analytically using Eq.
11 [70], where PSi ð:Þ is the Euclidean projection onto
Si ¼ Wijcard Wið Þ 6 aif g; i ¼ 1; . . . ;N.

Zt
i ¼ PSi Wt

i þ
K0tþ1

i

q

 !
ð11Þ
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Similar as subProblem 1, the second ‘‘surrogate” optimality condi-
tion, as shown in Eq. 12, needs to be satisfied at this point to ensure
multipliers updating to ‘‘proper” directions.

Lq Wt
i ;b

t
i ;Z

t
i ;K

tþ1
2

i

� �
< Lq Wt

i ;b
t
i ;Z

t�1
i ;K

tþ1
2

i

� �
ð12Þ

Step-sizes and multipliers are updated again as Eq. 13 when Eq. 12
is satisfied.

st ¼ at s
t�1

2 jjWt�1�Zt�1k
Wt�Ztk k

Ktþ1
i :¼ K

tþ1
2

i þ st Wt
i � Zt

i

� � ð13Þ

Same as the first step, previous step-sizes and multipliers are kept if
the condition is not satisfied. A fractional index 1

2 was adopted
within (9) to indicate that only a half of an iteration is complete,
and the ‘‘full” update is complete after both subproblems are solved
in (13). In both steps, parameter for the step-sizes are generically
formalized as Eq. 14, where M and r are predefined hyper-
parameters:

at ¼ 1� 1

M � t 1� 1
trð Þ ; M > 1; 0 < r < 1 ð14Þ
3.3. Multi-view information fusion

Because each model individually gives its prediction based on
the data in that view, we expected different segmentation accuracy
in different views. To deal with this, we fuse the prediction from
each of the views by leveraging the majority vote strategy. As
shown in Fig. 3, each single-view model would predict out a 3D
matrix. We use transform and padding to ensure the three matrices
are of the same dimension. We then use the majority vote method,
setting the pixel being one when more than two single-view mod-
els segment that pixel as objects on that pixel, or set it to zero
when less or equal than one single-view model segments it out.
The final prediction result would be one 3D matrix that fuses the
predictions from the three single-view models. It is shown in Sec-
tion 4 that our ensemble method greatly improves the segmenta-
tion accuracy.
4. Experiments

In this section, we demonstrate the effectiveness of our method
with experiments, including description of our dataset, experimen-
tal setting, and results.

4.1. Dataset

The adopted dataset [72] consists of 220 3D CT images captured
by a Simens biograph 64 machines. The ages of the associated
patients range from 1 month to 21 years, with the majority
between 1 month and 2 years. The size of the images is
512� 512� (130–340), and the typical voxel size is
0.25�0.25�0.5 mm3. The dataset covers 14 types of CHD. All label-
ing were performed by experienced radiologists, and the time for
labeling each image is 1–1.5 h. The labels include seven substruc-
tures: left ventricle (LV), right ventricle (RV), left atrium (LA), right
atrium (RA), myocardium (Myo), aorta (Ao), and pulmonary artery
(PA). Note that the area including RA, LA, LV, RV, PA, and Ao is
defined as blood pool. For easy processing, venae cavae (VC) and
pulmonary vein (PV) are also labeled as part of RA and LA, respec-
tively, as they are connected, and their boundaries are relatively
hard to define. Anomalous vessels are also labeled as one of the
above seven substructures based on their connections.



Fig. 3. Details of the fusion method.

Table 1
SLR training results on the three view of dataset through different compression rates.

View (%) Compression (%) (%) After (%) After
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In all the experiments, we leave one 3D image for testing. Then
among the remaining 219 images, 90% of the images are used for
training while 10% are used for validation.
Baseline Rate After
Training

Hardpruning Retraining

Axial 98.15 1:944� 97.64 97.63 97.82
7:947� 91.81 91.86 95.49
20:934� 90.50 90.54 91.50

Coronal 96.89 1:944� 96.72 96.72 96.72
7:947� 90.55 90.48 94.26
20:934� 88.81 88.60 89.77

Sagittal 96.53 1:944� 96.05 96.01 96.01
7:947� 88.78 86.55 93.57
20:934� 85.91 84.70 86.58

Table 2
Running speed (ms/img) on TX2 under different compression rates.

Compression Rate Axial Coronal Sagittal

1� 73.46 65.02 58.09
1:944� 66.09 58.48 44.28
7:947� 58.39 48.53 39.46
20:934� 53.59 36.22 35.86
4.2. Implementation detail

For evaluation purpose, we use the Dice Index as our evaluation
matrix. The equation is similar as Eq. 2 and is shown in Eq. 15.

Dice Index ¼
2
X
pixels

ytrue � ypredX
pixels

y2true þ
X
pixels

y2pred
ð15Þ

In the optimizing process, images and segmentation masks from all
three views are resized to 256� 256. For all the three models, we
use Adam [73] with cosine decay learning rate strategy [74] with
the learning rate initialized as 1e� 3, and batch size as 64.

SLR pruning process is then applied to all three models that
trained from the three views’ data. During SLR training, SLR param-
eters are set as M ¼ 300; r ¼ 0:1; s0 ¼ 10�2 and q ¼ 0:1. We also
use learning rate as 0:001, batch size as 32 and Adam optimizer
in the pruning process. All the experiments are conducted on
Ubuntu 18.04, Python 3.7 and PyTorch v1.6.0 software version.
Furthermore, we use Nvidia Quadro RTX 6000 GPU with 24 GB
GPU memory for the training. Inference and performance testing
are conducted on Nvidia Jetson TX2, which will be introduced later
in Section 4.3.
4.3. Experimental results and discussions

In this part, we first show the performance of the three single-
view models under different compression rates, and compare the
running speed between models with compression and models
without compression. The three single-view models are built on
axial view, sagittal view, and coronal view, respectively. Nvidia Jet-
son TX2 is used to test the inference running speed. Jetson TX2 is a
fast and power-efficient embedded AI computing device. It is a 7.5-
watt platform that built around an NVIDIA Pascal-family GPU and
loaded with 32 GB storage, 8 GB memory and 59:7GB=s memory
bandwidth [75]. On TX2, we use Python 3.6.9 with Torch v1.3.0.
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4.3.1. Results of single-view models with SLR pruning
Table 1 shows the prediction accuracy of the three single-view

models with and without model compression, and the accuracy of
each model under different compression ratios. ‘‘Baseline” means
the accuracy of models without applying compression. All three
models have a baseline greater than 96%. The axial-view model
has a prediction accuracy being 98:15%, which means this view
can predict more accurately than the other two views, providing
more information when ensemble the three results together. For
SLR weight pruning, results for all compressed models are reported
after 100 epochs of training and 10 epochs of masked retraining. In
the table, the compression rate is defined as the division of the size
of the uncompressed model by the size of the compressed model. It
measures the relative reduction in the size of the model after per-
forming a model compression algorithm on it [76].



Table 3
Accuracy (%) of the single-view models and ensemble multi-view models under
different compression rate.

Compression Rate Axial Coronal Sagittal Ensemble

1� 95.76 94.08 93.98 96.58
1:944� 95.70 93.88 93.72 96.54
7:947� 93.07 90.65 90.83 94.81
20:934� 79.94 83.48 80.37 88.39
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As shown in the table, when the compression ratio is 1:944�,
there is less than 0:5% accuracy drop for all three models. Espe-
cially for the coronal-view model, there is only 0:17% accuracy dif-
ference, which can be ignored. When the compression ratio is
7:947�, there is 2:66% accuracy drop for the axial-view model,
2:63% accuracy drop for the coronal-view model, and 2:96% accu-
racy drop for the sagittal-view model. And when the compression
ratios are up to 20:934�, there are 6:65%;7:12% and 9:95% accu-
Fig. 4. 3D surface visualization for the ground-truth and the output generated by

Fig. 5. 3D surface visualization for the ground-truth and the output generated by the pr
views.
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racy drop for the axial, coronal, and sagittal-view models, respec-
tively. Comparing all three compression ratios, the axial-view
model is the most robust one compared with the other two as it
not only provide the highest prediction accuracy, but also has min-
imal accuracy loss under different compression ratios. In contrast,
the sagittal-view model is more vulnerable compared with the
other two as it has the most accuracy loss and provides the lowest
prediction accuracy under all three compression ratios.

Such phenomenon may due to two reasons. First, the pixel size
of the 2D images in the axial view is usually isotropic in the two
directions (e.g., 0:25mm� 0:25mm). However, the pixel size of that
in the coronal view and the sagittal view is anisotropic, which
introduces difficulty in the segmentation. Second, the features in
the sagittal view are more difficult than those in the other two
views. There are two main parts of the blood pool: large blood pool
islands including the heart chambers and large great vessels, and
small blood pool islands including small great vessels and other
anomalous small vessels. In the axial view and the coronal view,
the proposed method (without pruning) and also from only S, C, and A views.

oposed method with compression rate being 1:944� and also from only S, C, and A



Fig. 6. 3D surface visualization for the ground-truth and the output generated by the proposed method with compression rate being 7:947� and also from only S, C, and A
views.

Fig. 7. 3D surface visualization for the ground-truth and the output generated by the proposed method with compression rate being 20:934� and also from only S, C, and A
views.
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most of the 2D images include both the large blood pool islands
and the small blood pool islands. However, in the sagittal view,
almost half of the 2D images only contain the small blood pool
islands (mainly the small pulmonary vessels), while the other half
Table 4
Comparison of of the single-view models, ensemble multi-view models and 3D-UNet und

Axial Coronal

Dice score 0.7843 0.8191
Precision 0.7843 0.8399
Recall 0.6903 0.9046

F1-score 0.9080 0.7839

#Operations (GMAC) 23.78 23.78
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only contains large blood pool islands (mainly the heart chambers).
In general, with the SLR-based pruning method applied, there are
very small accuracy losses in all three single-view models, which
shows the effectiveness of adding this compression technique.
er different experimental metrics when image size is 128.

Sagittal Ensemble 3D-UNet [6]

0.7321 0.8956 0.9067
0.7533 0.8957 0.9297
0.7532 0.9502 0.9306
0.7534 0.8471 0.9301

23.78 71.59 1894.42



Fig. 8. Axial side visualization for the ground-truth and the output generated by the proposed method (without pruning) and also from only S, C, and A views.

Fig. 9. Axial side visualization for the ground-truth and the output generated by the proposed method with compression rate being 1:944� and also from only S, C, and A
views.
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4.3.2. Comparison on performance of models with and without SLR
pruning

Table 2 lists the inference running speed of each model on TX2.
The speed is tested when models are under different compression
ratios. In the table, 1� means the models are not applied with SLR
compression. From the result, we can see that when there is no SLR
compression applied, the axial-view model has the largest running
speed as 73:46ms=img. Combining with the information from
Table 1, the axial-view model has the highest accuracy when there
is no compression, and also has the smallest accuracy loss when
the compression ratio is 20:934�, these together prove that the
axial-view model is the most robust one among all the three
single-view models. Then for all the three single-view models,
models with SLR compression technique applied can achieve
approximately 1:5� faster than models without compression
under compression ratio being 20:934�. This means that the SLR
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compression technique significantly improves the model effi-
ciency. Moreover, we can see that under compression ratio being
20:934�, both the coronal-viewmodel and the sagittal-viewmodel
can achieve a running speed of around 30ms=img. This leads to
real-time segmentation and further verifies the importance of add-
ing model compression to our segmentation model – this accuracy-
speed trade-off proves the effectiveness of applying the SLR weight
pruning. The difference in running speeds in the three views is
because of the different image sizes. The size of a CT image is usu-
ally 512� 512� Z0 (Z0 is usually between 200 and 300). In this
case, the image size in the axial-view is 512� 512, while in the
coronal-view and sagittal-view are both 512� Z0, which are much
smaller than that in the axial-view.

Table 3 compares the inference accuracy of the three single-
viewmodels with our multi-viewmodels under different compres-
sion rates. 1� means no compression technique applied. As the



Fig. 10. Axial side visualization for the ground-truth and the output generated by the proposed method with compression rate being 7:947� and also from only S, C, and A
views.

Fig. 11. Axial side visualization for the ground-truth and the output generated by the proposed method with compression rate being 20:934� and also from only S, C, and A
views.
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compression ratio increases for each single-view model, each
model has a different degree of accuracy loss. The coronal-view
model is more stable than the other two models as the accuracy
dropped by around 10% points when the compression ratio
increases to 20:934�, which is smaller compared with the axial-
view model drops around 15% and the sagittal-view model drops
around 13%. The ensemble multi-view models outperform all the
three single-view models under all compression rates. Firstly, it
achieves much higher accuracy than all the three single-viewmod-
els regardless of the compression rate. When no compression tech-
nique is applied, the ensemble model improves the accuracy by
around 2% on average. As the compression ratio increases to
20:934�, the accuracy improves by 7% to 88:39%. Secondly, as
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the compression ratio goes up from 1� to 20:934�, there is 8%
decrease in the accuracy of the ensemble model, which is smaller
than all the three single-view models.

Combining Table 2 and Table 3, we can see that for all the three
single-view models, the running time does not decrease much
when the compression ratio changes from 7:947� to 20:934�,
and is accompanied by a significant drop in accuracy of almost
10%, however, the running time is reduced by a factor of 1:5 when
the compression rate changes from 1� to 7:947�, and the accuracy
drop only around 3%. This shows the effectiveness of applying the
SLR pruning technique as it not only balances the relationship
between accuracy and speed very well, but also achieves the so-
called ‘‘real-time” medical image segmentation.



Fig. 12. Sagittal side visualization for the ground-truth and the output generated by the proposed method (without pruning) and also from only S, C, and A views.

Fig. 13. Sagittal side visualization for the ground-truth and the output generated by the proposed method with compression rate being 1:944� and also from only S, C, and A
views.
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4.3.3. Visualization and comparison on segmentation results from
models with and without SLR pruning

Example images and predicted segmentation results are pre-
sented for qualitative evaluation and comparison. Fig. 4–7 compare
the ground truth 3D surface visualization output and results that
generated by the proposed method and the three single-viewmod-
els under different compression rates. For the result from models
without weight pruning applied (Fig. 4), all the three single-view
models cannot precisely segment every detail. However, the out-
put frommulti-view prediction, which fuses the three models’ pre-
diction, is more accurate than the ground truth. In Fig. 5 with the
compression rate being 1:944�, coronal-view prediction in the first
row does not precisely predict the blood vessel at the lower-left
corner, but as both axial and sagittal-view give the right prediction,
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our multi-view prediction combines the information and segment
it out. As the compression rate gets greater, as in Fig. 7, with the
compression rate being 20:934�, it is difficult for the single-view
models to predict very accurately under that high compression
rate, then the advantages of the multi-view are becoming increas-
ingly clear.

Single-view 2D segmentation results from the three single-view
models under different compression rates are presented in A. We
can see that predictions can be made only on the single side of
images, but high accuracy can be maintained using the multi-
view models, especially when the compression rate is large.

From the comparisons in these 2D and 3D figures, we can notice
that the segmentation error comes from two sources: imprecise
boundary segmentation and extra small islands. There are mainly



Fig. 14. Sagittal side visualization for the ground-truth and the output generated by the proposed method with compression rate being 7:947� and also from only S, C, and A
views.

Fig. 15. Sagittal side visualization for the ground-truth and the output generated by the proposed method with compression rate being 20:934� and also from only S, C, and A
views.
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two reasons. First, the contrast of the CT images in the boundary
part is rather low, making it hard to recognize even for radiologists.
Note that this is also a widely recognized problem in the biomed-
ical domain [1]. Second, 3D segmentation learning that only using
2D images may not fully exploit their correlation.

Moreover, CNN-based structures have some disadvantages in
biomedical image tasks such as losing spatial relationships of
learned features. To overcome this, capsule networks have been
used recently in medical image classification tasks [77]. A combi-
nation of our proposed architecture with the capsule network will
be left as our future work.

4.3.4. Comparison of multi-view ensemble model with 3D model
In this part, we evaluate our 2D multi-view ensemble method

under segmentation metrics, which includes precision, recall, and
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F-1 score. We also compare the performance of the ensemble
method with the 3D image segmentation method.

Table 4 compares the single-view models and the ensemble
model with the 3D-UNet segmentation method under different
evaluation metrics. Here, we do not apply the pruning technique
to the three single-view models. The three evaluation metrics are
calculated as in Eq. 16.

Dice Score ¼ 2�TP
2�TPþFPþFN

Precision ¼ TP
TPþFP ; Recall ¼ TP

TPþFN

F� 1 ¼ 2� Precision�Recall
PrecisionþRecall

ð16Þ

where TP; TN; FT , and FN represent the number of true positive, true
negative, false positive, and false negative, respectively. The thresh-
old for precision, recall, and F-1 is 0:5 in all experiments. Note that



Fig. 16. Coronal side visualization for the ground-truth and the output generated by the proposed method (without pruning) and also from only S, C, and A views.

Fig. 17. Coronal side visualization for the ground-truth and the output generated by the proposed method with compression rate being 1:944� and also from only S, C, and A
views.
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because of the resource constraints, the 3D-UNet can only be
trained when the 3D images are resized to 128� 128� 128 under
batch-size equals to 1. This not only lengthens the training time,
but also affects the accuracy of the model. Even so, the model is still
too large to be deployed on the Jetson TX2. In this case, we show the
Giga multiply-accumulation operations (GMAC) of the models to
show the performance. For a fair comparison, the single-view mod-
els are also trained under the image size being 128.

From the table, we can see that there is not much difference
between the 3D model and the ensemble model under the four
evaluation metrics. This indicates that our proposed method
retains the accuracy very well. From the performance perspective,
the 3D model is 26:5� more computationally intensive than the
ensemble model (13.25� on running speed by estimation using
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the number of operations). Here, the three single-view models
have the same GMAC because they share the same model structure
but are trained under different data. The GMAC of the ensemble
model is calculated as the sum of the three single-view models
plus the GMAC of the majority vote process. This indicates that
our ensemble model saves a lot of computational effort compared
to the 3D model and would lead to much shorter running time
while doing the inference. Similar to the result in Table 3, the
ensemble model achieves a higher value than all the three
single-view models in all the evaluation metrics except precision.
For the three single-view models, the axial-view model gets the
highest dice score and recall score, but gets the lowest precision
and F-1 score among all the three models. This shows the axial-
view model has higher FP compared with the other two models.



Fig. 18. Coronal side visualization for the ground-truth and the output generated by the proposed method with compression rate being 7:947� and also from only S, C, and A
views.

Fig. 19. Coronal side visualization for the ground-truth and the output generated by the proposed method with compression rate being 20:934� and also from only S, C, and A
views.
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5. Conclusion

In this paper, we propose to combine multi-view ensemble and
Surrogate Lagrangian relaxation for real-time 3D biomedical image
segmentation. In order to achieve real-time and balance the rela-
tionship between segmentation speed and accuracy, we split the
three-dimensional medical images into a series of two-
dimensional images in three different planes, i.e., axial planes,
sagittal planes, and coronal planes, and apply 2D segmentation
model, respectively. We further apply SLR-based weight pruning
technique to reduce the model size and improve the running speed
while keeping the performance of the model. Ensemble method is
also applied for improvement of the segmentation accuracy. Exper-
iments show that our ensemble model achieves 9% accuracy
479
improves compared with single-view segmentation models. It also
saves 26� computational resources and 6� memory resources
compared to 3D segmentation model. With SLR weight pruning
applied, the sagittal-view model can achieve real-time segmenta-
tion, while the axial and coronal-view models can achieve nearly
real-time. This leads our ensemble model 1:5� faster with a very
small accuracy loss compared with single-view models without
compression.
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Appendix A. Single-view 2D segmentation results

In this appendix, we show the 2D segmentation result from the
three single-view models under different compression rates, and
compare them with the ground truth to visualize the performance
of each single-view model. Fig. 8–11 show the prediction on axial
view, Fig. 12–15 show the prediction on sagittal view, and Fig. 16–
19 show the prediction on coronal view. They are all under differ-
ent compression rates. The green boxes in these figures label the
segmentation error between the current figure and the corre-
sponding ground truth.
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